• Title/Summary/Keyword: 이러닝 플랫폼

Search Result 184, Processing Time 0.024 seconds

Design and Implementation of Intelligent Tutoring Agent Platform Based on Collective Intelligence (집단지성기반 지능형 튜터링 에이전트 플랫폼 설계 및 구현)

  • Hong, Seong-Yong;Yi, Mun-Yong;Yoon, Wan-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.122-124
    • /
    • 2012
  • 최근 지식정보화 시대의 집단지성기반 교육 패러다임 변화는 큰 이슈로 떠오르고 있다. 특히 융합적 학문을 근원으로 창의성 계발과 아이디어를 중요시하고 있으며, 창조적 교육방식을 지향하고 있다. 그러나 다양한 영역에 지식전문가들과 학습자들 간에 지식을 공유하기 위한 플랫폼 공간이 제대로 제공되고 있지 못하며, 단순한 컨텐츠 제공을 목적으로 이러닝 서비스가 일부 제공되고 있는 것이 현실이다. 따라서 본 논문에서는 집단지성을 기반으로 지능형 튜터링 에이전트 시스템 설계를 제안하고, 새로운 에이전트(Agent) 개념을 통해 지식인들과 학습자들 간에 지식을 공유할 수 있을 뿐만 아니라 새로운 지식을 창출하고, 관리 및 유통할 수 있는 구조를 연구하였다. 또한 사용자들로부터 발생하는 데이터와 정보들을 자동 분석하여 지능적으로 학습상황에 대처할 수 있도록 설계하였으며, 튜터(Tutor)와 튜티(Tutee)간에 협력적인 학습 생태계가 형성될 수 있도록 하였다. 따라서 본 연구의 결과를 기반으로 미래 스마트 학습 플랫폼 발전에 많은 도움이 되길 기대한다.

Learning Method of Data Bias employing MachineLearningforKids: Case of AI Baseball Umpire (머신러닝포키즈를 활용한 데이터 편향 인식 학습: AI야구심판 사례)

  • Kim, Hyo-eun
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.273-284
    • /
    • 2022
  • The goal of this paper is to propose the use of machine learning platforms in education to train learners to recognize data biases. Learners can cultivate the ability to recognize when learners deal with AI data and systems when they want to prevent damage caused by data bias. Specifically, this paper presents a method of data bias education using MachineLearningforKids, focusing on the case of AI baseball referee. Learners take the steps of selecting a specific topic, reviewing prior research, inputting biased/unbiased data on a machine learning platform, composing test data, comparing the results of machine learning, and present implications. Learners can learn that AI data bias should be minimized and the impact of data collection and selection on society. This learning method has the significance of promoting the ease of problem-based self-directed learning, the possibility of combining with coding education, and the combination of humanities and social topics with artificial intelligence literacy.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

A Study on Applicability of Machine Learning for Book Classification of Public Libraries: Focusing on Social Science and Arts (공공도서관 도서 분류를 위한 머신러닝 적용 가능성 연구 - 사회과학과 예술분야를 중심으로 -)

  • Kwak, Chul Wan
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.133-150
    • /
    • 2021
  • The purpose of this study is to identify the applicability of machine learning targeting titles in the classification of books in public libraries. Data analysis was performed using Python's scikit-learn library through the Jupiter notebook of the Anaconda platform. KoNLPy analyzer and Okt class were used for Hangul morpheme analysis. The units of analysis were 2,000 title fields and KDC classification class numbers (300 and 600) extracted from the KORMARC records of public libraries. As a result of analyzing the data using six machine learning models, it showed a possibility of applying machine learning to book classification. Among the models used, the neural network model has the highest accuracy of title classification. The study suggested the need for improving the accuracy of title classification, the need for research on book titles, tokenization of titles, and stop words.

A Deep Learning-based Automatic Modulation Classification Method on SDR Platforms (SDR 플랫폼을 위한 딥러닝 기반의 무선 자동 변조 분류 기술 연구)

  • Jung-Ik, Jang;Jaehyuk, Choi;Young-Il, Yoon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.568-576
    • /
    • 2022
  • Automatic modulation classification(AMC) is a core technique in Software Defined Radio(SDR) platform that enables smart and flexible spectrum sensing and access in a wide frequency band. In this study, we propose a simple yet accurate deep learning-based method that allows AMC for variable-size radio signals. To this end, we design a classification architecture consisting of two Convolutional Neural Network(CNN)-based models, namely main and small models, which were trained on radio signal datasets with two different signal sizes, respectively. Then, for a received signal input with an arbitrary length, modulation classification is performed by augmenting the input samples using a self-replicating padding technique to fit the input layer size of our model. Experiments using the RadioML 2018.01A dataset demonstrated that the proposed method provides higher accuracy than the existing methods in all signal-to-noise ratio(SNR) domains with less computation overhead.

Brand Platformization and User Sentiment: A Text Mining Analysis of Nike Run Club with Comparative Insights from Adidas Runtastic (텍스트마이닝을 활용한 브랜드 플랫폼 사용자 감성 분석: 나이키 및 아디다스 러닝 앱 리뷰 비교분석을 중심으로)

  • Hanna Park;Yunho Maeng;Hyogun Kym
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.43-66
    • /
    • 2024
  • In an era where digital technology reshapes brand-consumer interactions, this study examines the influence of Nike's Run Club and Adidas' Runtastic apps on loyalty and advocacy. Analyzing 3,715 English reviews from January 2020 to October 2023 through text mining, and conducting a focused sentiment analysis on 155 'recommend' mentions, we explore the nuances of 'hot loyalty'. The findings reveal Nike as a 'companion' with an emphasis on emotional engagement, versus Runtastic's 'tool' focus on reliability. This underscores the varied consumer perceptions across similar platforms, highlighting the necessity for brands to integrate user preferences and address technical flaws to foster loyalty. Demonstrating how customized technology adaptations impact loyalty, this research offers crucial insights for digital brand strategy, suggesting a proactive approach in app development and management for brand loyalty enhancement

Construction of Medical Image-Based Learning Data Support Platform for Machine Learning and Its Application of Sarcopenia Data AI (머신러닝을 위한 의료영상기반 학습 데이터 지원 플랫폼 구축 및 근감소증 데이터 AI 응용)

  • Kim, Ji-Eon;Lim, Dong Wook;Yu, Yeong Ju;Noh, Si-Hyeong;Lee, ChungSub;Kim, Tae-Hoon;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.434-436
    • /
    • 2021
  • 의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.

A travel recommendation system tailored to personal tendency analysis using deep learning (딥러닝을 활용한 개인 성향 분석에 맞춘 여행 추천시스템)

  • Sol-Bi Kim;Chang-Suk Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.504-506
    • /
    • 2023
  • 본 연구에서는 기존 여행지 추천의 플랫폼에 있어 개인의 취향에 맞는 여행지 추천이 어렵다는 점을 해결하고자, 비선형적 관계를 해결할 수 있는 NCF 심층신경망 추천시스템을 이용하여 개인의 성향에 따라 여행지를 추천해 주는 시스템을 제안하고 이를 평가한 결과를 보고한다.

A Study of Federated Learning base Broadcast Information recommendation platform (연합 학습을 이용한 개인 맞춤형 방송 정보 제공 플랫폼 연구)

  • Kim, Hyunsoo;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.658-660
    • /
    • 2022
  • 본 논문은 개인의 정보를 외부로 유출하지 않고, 소비자 방송 수신 단말 장치에 저장된 데이터를 이용하여 머신 러닝 모델을 학습하고, 소비자가 원하는 맞춤 방송 정보를 제공하는 시스템을 구글의 연합 학습[1] 을 기반한 설계에 관한 것이다. 이를 위하여, 소비자 사용 패턴 및 행동 데이터를 수집하고 저장하며 머신 러닝 학습을 진행 하는 단말 구조와 단말에서 생성된 학습 모델 파라미터 정보를 수집하고 평균화 하는 중앙 서버의 구조를 연구하고, 연합 학습을 이용한 학습 정보를 이용하여 개인 맞춤형 방송 정보를 제공하는 시스템을 연구한다.

Design and Implementation of YouTube-based Educational Video Recommendation System

  • Kim, Young Kook;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.37-45
    • /
    • 2022
  • As of 2020, about 500 hours of videos are uploaded to YouTube, a representative online video platform, per minute. As the number of users acquiring information through various uploaded videos is increasing, online video platforms are making efforts to provide better recommendation services. The currently used recommendation service recommends videos to users based on the user's viewing history, which is not a good way to recommend videos that deal with specific purposes and interests, such as educational videos. The recent recommendation system utilizes not only the user's viewing history but also the content features of the item. In this paper, we extract the content features of educational video for educational video recommendation based on YouTube, design a recommendation system using it, and implement it as a web application. By examining the satisfaction of users, recommendataion performance and convenience performance are shown as 85.36% and 87.80%.