• Title/Summary/Keyword: 이러닝 유통모델

Search Result 10, Processing Time 0.022 seconds

Analysis of Distribution Structure and Its Improvement Plan for e-Learning Business (이러닝산업 유통구조 분석 및 개선방안 연구)

  • Han, Tae In
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.83-94
    • /
    • 2013
  • The e-Learning is one of best ways to generate the substitution effect for classroom learning, and robust and rational distribution structure for e-Learning industry is the key issue for successful educational performance of e-Learning, however the recent e-Learning market has a distribution status quite different from rational structure. This paper focuses on issues of e-Learning distribution status and alternatives for policy making. In order to make this study successful, we discuss about concepts and scopes of e-Learning distribution and various types of distribution structure by business models. We conducted an interview survey for business individual experts for distribution modelling. Based on the result of the survey, this paper describes issues of distribution structure and suggests alternatives for policy making in the Korea e-Learning market.

Hangul Font Dataset for Korean Font Research Based on Deep Learning (딥러닝 기반의 한글 폰트 연구를 위한 한글 폰트 데이터셋)

  • Ko, Debbie Honghee;Lee, Hyunsoo;Suk, Jungjae;Hassan, Ammar Ul;Choi, Jaeyoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 2021
  • Recently, as interest in deep learning has increased, many researches in various fields using deep learning techniques have been conducted. Studies on automatic generation of fonts using deep learning-based generation models are limited to several languages such as Roman or Chinese characters. Generating Korean font is a very time-consuming and expensive task, and can be easily created using deep learning. For research on generating Korean fonts, it is important to prepare a Korean font dataset from the viewpoint of process automation in order to keep pace with deep learning-based generation models. In this paper, we propose a Korean font dataset for deep learning-based Korean font research and describe a method of constructing the dataset. Based on the Korean font data set proposed in this paper, we show the usefulness of the proposed dataset configuration through the process of applying it to a deep learning Korean font generation application.

Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices (인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구)

  • LI YU;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • This study aims to develop an integrated agricultural distribution network management system to improve the quality, profit, and decision-making efficiency of agricultural products. We adopt two key techniques: crop maturity detection based on the YOLOX target detection algorithm and market price prediction based on the Prophet model. By training the target detection model, it was possible to accurately identify crops of various maturity stages, thereby optimizing the shipment timing. At the same time, by collecting historical market price data and predicting prices using the Prophet model, we provided reliable price trend information to shipping decision makers. According to the results of the study, it was found that the performance of the model considering the holiday factor was significantly superior to that of the model that did not, proving that the effect of the holiday on the price was strong. The system provides strong tools and decision support to farmers and agricultural distribution managers, helping them make smart decisions during various seasons and holidays. In addition, it is possible to optimize the distribution network of agricultural products and improve the quality and profit of agricultural products.

Objectivity in Korean News Reporting : Machine Learning-Based Verification of News Headline Accuracy (기계학습 기반 국내 뉴스 헤드라인의 정확성 검증 연구)

  • Baik, Jisoo;Lee, Seung Eon;Han, Jiyoung;Cha, Meeyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.281-286
    • /
    • 2021
  • 뉴스 헤드라인에 제3자의 발언을 직접 인용해 전언하는 이른바 '따옴표 저널리즘'이 언론 보도의 객관주의 원칙을 해치는지는 언론학 및 뉴스 구독자에게 중요한 문제이다. 이 연구는 온라인 포털사이트를 통해 실시간 유통되는 한국어 기사의 정확성을 판별하기 위한 기계학습(Machine Learning) 모델을 제안한다. 이 연구에서 제안하는 모델은 Edit Distance와 FastText 기법을 활용해 기사 제목과 본문 내 인용구의 유사성을 측정하고, XGBoost 모델을 활용해 최종 분류한다. 아울러 이 모델을 통해 229만 건의 뉴스 헤드라인에 대해 직접 인용구가 포함된 기사가 취재원의 발언을 주관적인 윤색없이 독자들에게 전하고 있는지를 판별했다. 이뿐만 아니라 딥러닝 기반의 KoELECTRA 모델을 활용해 기사의 제목 내 인용구에 대한 감성 분석을 진행했다. 분석 결과, 윤색이 가미되지 않은 직접 인용형 기사의 비율이 지난 20년 동안 10% 이상 증가했으며, 기사 제목의 인용구에 나타나는 감정은 부정 감성이 긍정 감성의 2.8배 정도로 우세했다. 이러한 시도는 앞으로 계산사회과학 방법론과 빅데이터에 기반한 언론 보도의 평가 및 개선에 도움을 주리라 기대한다.

  • PDF

Transformer-based Text Summarization Using Pre-trained Language Model (사전학습 언어 모델을 활용한 트랜스포머 기반 텍스트 요약)

  • Song, Eui-Seok;Kim, Museong;Lee, Yu-Rin;Ahn, Hyunchul;Kim, Namgyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.395-398
    • /
    • 2021
  • 최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.

  • PDF

An Empirical Study on Prediction of the Art Price using Multivariate Long Short Term Memory Recurrent Neural Network Deep Learning Model (다변수 LSTM 순환신경망 딥러닝 모형을 이용한 미술품 가격 예측에 관한 실증연구)

  • Lee, Jiin;Song, Jeongseok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.552-560
    • /
    • 2021
  • With the recent development of the art distribution system, interest in art investment is increasing rather than seeing art as an object of aesthetic utility. Unlike stocks and bonds, the price of artworks has a heterogeneous characteristic that is determined by reflecting both objective and subjective factors, so the uncertainty in price prediction is high. In this study, we used LSTM Recurrent Neural Network deep learning model to predict the auction winning price by inputting the artist, physical and sales charateristics of the Korean artist. According to the result, the RMSE value, which explains the difference between the predicted and actual price by model, was 0.064. Painter Lee Dae Won had the highest predictive power, and Lee Joong Seop had the lowest. The results suggest the art market becomes more active as investment goods and demand for auction winning price increases.

Application of Bayesian network for farmed eel safety inspection in the production stage (양식뱀장어 생산단계 안전성 조사를 위한 베이지안 네트워크 모델의 적용)

  • Seung Yong Cho
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.459-471
    • /
    • 2023
  • The Bayesian network (BN) model was applied to analyze the characteristic variables that affect compliance with safety inspections of farmed eel during the production stage, using the data from 30,063 cases of eel aquafarm safety inspection in the Integrated Food Safety Information Network (IFSIN) from 2012 to 2021. The dataset for establishing the BN model included 77 non-conforming cases. Relevant HACCP data, geographic information about the aquafarms, and environmental data were collected and mapped to the IFSIN data to derive explanatory variables for nonconformity. Aquafarm HACCP certification, detection history of harmful substances during the last 5 y, history of nonconformity during the last 5 y, and the suitability of the aquatic environment as determined by the levels of total coliform bacteria and total organic carbon were selected as the explanatory variables. The highest achievable eel aquafarm noncompliance rate by manipulating the derived explanatory variables was 24.5%, which was 94 times higher than the overall farmed eel noncompliance rate reported in IFSIN between 2017 and 2021. The established BN model was validated using the IFSIN eel aquafarm inspection results conducted between January and August 2022. The noncompliance rate in the validation set was 0.22% (15 nonconformances out of 6,785 cases). The precision of BN model prediction was 0.1579, which was 71.4 times higher than the non-compliance rate of the validation set.

A Study on The Fault Detection System in Gas Lighter Manufacturing Process (라이터 제조공정의 불량 검출 시스템)

  • Choi, Sung-June;Park, Sang-Hyun;Lee, Kang-Hee;Shin, Youn-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.132-135
    • /
    • 2021
  • 국내에서 유통되는 일회용 가스라이터 점유율의 약 절반은 국내 유일의 한 공장에서 생산하고 있다. 저렴한 외국산 가스라이터로부터 국내 사업을 보호하기 위해 품질 향상과 원가경쟁력 확보의 중요성이 매우 커진 것이 현실이다. 본 논문에서는 YOLOv4 머신러닝 객체인식 모델과 OpenCV 실시간 이미지 처리 오픈소스를 활용해 개발한 불량품 자동 검출 시스템을 제안한다. 대표적인 불량인 '액화가스 부피 불량품'을 검출하는 시스템을 개발하고 실험을 통해 그 정확성을 검증하였다. 제안한 시스템은 97%의 정확도로 상태를 분류하였으며, 이를 통해 100%의 불량을 검출할 수 있었다.

Automated Data Extraction from Unstructured Geotechnical Report based on AI and Text-mining Techniques (AI 및 텍스트 마이닝 기법을 활용한 지반조사보고서 데이터 추출 자동화)

  • Park, Jimin;Seo, Wanhyuk;Seo, Dong-Hee;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.69-79
    • /
    • 2024
  • Field geotechnical data are obtained from various field and laboratory tests and are documented in geotechnical investigation reports. For efficient design and construction, digitizing these geotechnical parameters is essential. However, current practices involve manual data entry, which is time-consuming, labor-intensive, and prone to errors. Thus, this study proposes an automatic data extraction method from geotechnical investigation reports using image-based deep learning models and text-mining techniques. A deep-learning-based page classification model and a text-searching algorithm were employed to classify geotechnical investigation report pages with 100% accuracy. Computer vision algorithms were utilized to identify valid data regions within report pages, and text analysis was used to match and extract the corresponding geotechnical data. The proposed model was validated using a dataset of 205 geotechnical investigation reports, achieving an average data extraction accuracy of 93.0%. Finally, a user-interface-based program was developed to enhance the practical application of the extraction model. It allowed users to upload PDF files of geotechnical investigation reports, automatically analyze these reports, and extract and edit data. This approach is expected to improve the efficiency and accuracy of digitizing geotechnical investigation reports and building geotechnical databases.

A Deep Learning Method for Cost-Effective Feed Weight Prediction of Automatic Feeder for Companion Animals (반려동물용 자동 사료급식기의 비용효율적 사료 중량 예측을 위한 딥러닝 방법)

  • Kim, Hoejung;Jeon, Yejin;Yi, Seunghyun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.263-278
    • /
    • 2022
  • With the recent advent of IoT technology, automatic pet feeders are being distributed so that owners can feed their companion animals while they are out. However, due to behaviors of pets, the method of measuring weight, which is important in automatic feeding, can be easily damaged and broken when using the scale. The 3D camera method has disadvantages due to its cost, and the 2D camera method has relatively poor accuracy when compared to 3D camera method. Hence, the purpose of this study is to propose a deep learning approach that can accurately estimate weight while simply using a 2D camera. For this, various convolutional neural networks were used, and among them, the ResNet101-based model showed the best performance: an average absolute error of 3.06 grams and an average absolute ratio error of 3.40%, which could be used commercially in terms of technical and financial viability. The result of this study can be useful for the practitioners to predict the weight of a standardized object such as feed only through an easy 2D image.