• Title/Summary/Keyword: 이동 차량 하중

Search Result 94, Processing Time 0.032 seconds

Comparative study on the cable stayed bridge under moving load state (이동하중을 받는 사장교의 거동비교)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.258-266
    • /
    • 2017
  • Cable-stayed bridges are bridges with long spans for special purposes. Due to the long span, the dynamic response of the vehicle to the moving load is very special. The behavior also has nonlinear, which makes it difficult to design. In this study, the responses of cable - stayed bridges are considered considering various vehicle loads and the behavior of long - span bridges under moving loads is investigated. Especially, when the loads for one direction and for both directions move with speed, the behavior of the bridges is found to be due to the flexibility of the cable. It can be seen that the analysis including the dynamic behavior of the cable and the top plate is more effective because the influence of the vehicle load tends to amplify the vertical deformation together with the vibration of the cable.

Effects of Moving Dynamic Vehicle Loads on Flexible Pavement Response (차량의 이동하중과 하중형태가 연성 포장의 거동 특성에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok;Nam, Young-Ho;Im, Jong-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • The most important elements in flexible pavement design criteria are stress and strain distributions. To obtain reasonable stress and strain distributions in pavements, moving wheel loads must be applied to analyze the pavement responses. In this study, finite element analysis was used to identify the three-dimensional states using the vehicle load into a constant-position / time-variable load (25, 50 and 80km/hr). In an elastic system, the strain is the same in both longitudinal and transverse directions under a single wheel. However, the same is not necessary in a viscoelastic system. Test results showed that the maximum values between transverse and longitudinal strains the bottom of asphalt concrete base layers under 25km/hr were were about 40 percent.

Dynamic Analysis for a Arch Railway Bridge Considering Real Train Loads (실 열차하중을 고려한 아치 교량의 동적해석)

  • Kim, Jung-Hun;Lee, Joo-Tak;Lee, Myeong-Sup;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • 고속열차(KTX)를 지지하는 구조물은 차량과 지속적인 접촉을 갖는 구조를 가지고 있으므로 고속열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 고속열차의 연행이동집중하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계 기준사항들을 만족해야한다. 호남고속철도 설계지침에 의하면 고속열차(KTX)의 운행 안정성을 평가하기 위한 항목들로 대상 교량의 고유진동수, 상판 수직가속도, 면틀림 그리고 승차감을 고려한 연직처침 등이 요구된다. 따라서, 본 연구에서는 KTX의 실 열차하중을 고려하여 연행이동집중하중으로 아치 교량의 동적거동을 검토하였으며, 호남고속철도 설계지침을 적용하여 대상 교량의 운행 안정성을 평가하였다.

  • PDF

A Moving Track Test Using Tire-Wheel Tracking Machine (고무바퀴트랙하중 시험기를 이용한 왕복하중실험)

  • Sung, Ik-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.250-256
    • /
    • 2010
  • In this paper, an analytical and experimental study is performed in order to determine the effects of interaction between vehicle and bridge superstructure. For this purpose an improved wheel tracking machine and an adequate single span bridge are designed. Results presented in the paper show that wheel tracking machine including moving mass effects can demonstrate more accurate dynamic interaction between vehicle and structure.

An Application of Dynamic Loading Test of Precast Module Concrete Decks (프리캐스트 모듈 바닥의 동하중 재하시험)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • In this study, the panel joint behavior by the vehicle load moving on precast panel is analyzed. The frame was made for loading and the behavior was determined by using each measuring device. The static response of the panel was examined and compared with the theoretical value, and it was found that the characteristics were very reasonable. In addition, acceleration, velocity, and displacement were measured for dynamic impact evaluation, and the characteristics of moving load were analyzed in the test. The vibration frequency of the panel was measured for the dynamic response by the moving load, and the vibration characteristic was considered to be sensitive to the range of the load. As a result, it is considered that the dynamic response of the connection part should be careful in design because the characteristics are different according to the connection method.

Equivalent Vehicle Load Factors for Girder and Beam of Parking Garage Structure (주차장 구조물의 보와 거더의 등가차량 하중계수에 관한 연구)

  • 곽효경;송종영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.203-216
    • /
    • 1997
  • The Equivalent vehicle load factors of Beams and Girders on parking garage structure are proposed in this study. Without taking the sophisticated numerical analysis for the concentrated wheel loads, the design member forces of beam and girder can be easily calculated only with those for the distributed load by using the constructed relationships between the equivalent vehicle load factor and the length of member. Besides, the standard vehicle with total weight of 2.4ton is designed based on the review of many foreign design codes for parking garage and the investigation of small to medium vehicles made in Korea. Finally the efficiency and the reliability of the proposed equivalent vehicle load factors are demonstrated through the application of the typical beam and girder.

  • PDF

Experimental Study on the Dynamic Response of Box Girder Long-Span Bridges under Various Travelling Vehicles (다양한 차량주행에 의한 박스형 장대교량의 동적 응답에 관한 실험적 연구)

  • Lee, Rae-Chul;Lee, Sang-Youl;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.129-138
    • /
    • 2004
  • In this study we determine a dynamic analysis of the existing two-span prestressed concrete box girder bridge subjected to moving vehicle loads using the experimental measurements. The moving loads applied in this paper are classified as general travelling, suddenly brake, continuous travelling, reversely travelling and reversely travelling impact loads for increasing velocities. For each travelling load, we search dynamic behaviors and characteristic in various measuring point of box girder section. In addition, the three-dimensional numerical results analyzed by the developed finite element program using flat shell element with six degrees of freedom per a node are compared with the measured experimental data. Dynamic behaviors caused impact loads by suddenly braking, reversely travelling, are bigger than by general travelling in box girder. Three-dimensional numerical results are better than one-dimensional results.

A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads (차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구)

  • Park, Seoksoon;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.206-219
    • /
    • 2011
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of numerical analysis. A 3-dimension finite element model was used to simulate each test section and a step loading approximation has been adopted to analyze the effect of a moving vehicle on pavement behaviors. For viscoelastic analysis, relaxation moduli, E(t), of asphalt mixtures were obtained from laboratory test. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains), and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

A Study on Dynamic Serviceability Evaluation of Bridge considering Traffic Effects (차량 주행을 고려한 교량의 동적 사용성 평가에 관한 연구)

  • Han, Kyung-Hee;Sung, Ik-Hyun;Kim, Byung-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • 본 연구에서는 차량-교량간 상호작용효과가 교량의 동적거동에 미치는 영향을 분석하기 위한 차량 주행 하중에 대한 실험적 및 이론적 연구를 수행하였다. 이를 위하여 차량 교량간 상호작용이 포함된 이동질량형 윤하중 실험기를 단순교형식 교량에 적용하여 반복주행실험을 수행하였다. 이동질량 반복 주행실험 결과를 분석하여 차량-교량간의 상호작용을 포함한 가속도 형태의 실동주행차량가속도를 규명하였다. 규명된 차량의 실동주행차량가속도를 범용 해석프로그램에 적용하여 차량-교량 상호작용을 재현할 수 있었다. 또한 차량주행시 교량의 사용성평가에 대한 기본자료를 판단할 수 있었다.

  • PDF