본 논문에서는 초음파 및 적외선 센서와 무선 카메라를 장착한 소형 이동 로봇의 장애물 회피 및 물체 추적 방법을 제시한다. 장애물 회피를 위해서 제어부의 초음파 발생 신호의 귀환시간과 거리와의 관계 및 적외선 센서에서 측정한 아날로그신호와 거리와의 관계를 추출하여 이동 로봇과 물체와의 거리를 판단하여 로봇의 움직임을 제어하는데 사용한다. 물체 추적 모드에서는 첫째, 물체와 배경 및 유사잡음들과의 강인한 분리를 위하여 고유색상정보와 움직임 정보 등의 사전정보를 활용하였으며 둘째, 형태의 변화가 수반되는 경우에도 유연한 대처능력을 갖도록 하기 위해 영상의 영역분할 방법을 통해 모든 후보영역내의 물체의 존재를 확인하고 물체영역만을 추출하였다. 셋째, 물체 형태정보함수를 정의하고 해당함수를 형태의 보전 에너지로 활용하여 동일 물체의 대응문제를 효과적으로 해결하였다.
이동 물체 추적에 있어서 배경과 이동 물체의 동적인 변화는 폐색이라는 문제를 발생시키는 중요한 원인이다. 그리고 이러한 폐색이 발생하는 환경에서는 이동 물체 추적의 정확도가 현저하게 감소한다 따라서 본 논문에서는 배경 또는 다른 물체에 의해 발생하는 부분적 폐색에 강건한 활동적 퓨전 모델을 제안한다. 활동적 퓨전 모델은 이동 물체의 경계선 특징을 기반으로 하는 전통적인 기존의 스네이크 모델과 경계선 내부의 영역 특징을 고려하는 영역 기반 스네이크 모델로 구성된다. 이것은 먼저 이동 물체에 발생하는 부분적 폐색의 종류를 윤곽선 폐색과 영역폐색으로 구분한 뒤 폐색이 발생하는 위치와 폐색량에 따라서 각 모델의 신뢰도를 조절함으로써 부분적 폐색문제를 극복한다. 실험 결과에서는 부분적으로 폐색이 발생하는 환경에서 기본 방법들이 이동물체 추적에 실패하는 반면에 제안하는 방법은 추적에 성공함을 보인다.
본 논문에서는 무인항공기 영상에서 움직임 예측을 이용한 이동 물체 추적 알고리즘을 제안하였다. 제안한 알고리즘은 초기모델 생성단계와 이동 물체 추적 단계로 구성되어있으며, 이전 프레임에 비해 이동 거리가 커진 경우에도 안정적으로 추적할 수 있었다. 그리고 무인항공기 카메라의 흔들림에도 효과적으로 추적을 할 수 있었고, 이동 물체의 위치를 정확히 검출하여 추적시간을 단축할 수 있었다. 블록 영상과 참조 영상 간 이동물체의 유사도 판정은 블록 매칭 알고리즘을 사용하였다. 제안한 알고리즘은 실험을 통해서 기존의 전역탐색 알고리즘보다 향상된 결과를 보여주었다.
본 연구에서는 이동 물체의 색상이 배경 내 색상과 동일하거나 유사한 색상이 존재하는 경우 컬러기반에서 효과적으로 이동 물체의 추적 방법을 다루고 있다. 대표적인 컬러 기반 추적방법인 CamShift 알고리즘은 배경 영상에 이동물체의 색상이 존재하는 경우 불안정한 추적을 보여주고 있다. 이러한 단점을 극복하기 위해 본 논문에서는 물체의 Depth 정보를 병합한 CamShift 알고리즘을 제안하고 있다. Depth 정보 영상의 모든 픽셀의 거리정보를 측정하는 Kinect 장치로부터 구할 수 있다. 실험결과 이동물체의 거리정보를 병합시킨 제안된 추적 방법은 기존 CamShift 알고리즘의 불안정한 추적기능을 보완하였고, CamShift 알고리즘만 사용한 경우와 비교해 볼 때 추적성능을 향상시켰다.
능동 윤곽선 모델, 즉 스네이크 알고리즘은 물체 탐지 및 추적에 사용되는 유용한 알고리즘이다. 그러나 이 알고리즘은 요소별 가중치 부여 및 반복단계 시 많은 변수가 필요하고, 초기화 애로 및 계산상 불안정성 등의 단점이 있다. 따라서 본 논문에서는 이러한 단점을 개선하여 보다 효과적인 이동물체 탐지 및 추적을 위해 기존 스네이크 알고리즘의 외부 에너지를 개선한 새로운 에너지 보정 스네이크(ECS) 알고리즘을 제안한다. 이를 위해 이동물체 이동 시 획득한 차영상 이미지를 4개의 방향성 이미지로 복사하고 각 이미지 픽셀에 대해 누적 연산 후 에너지 강화배열 내 저장 및 노이즈 제거를 통해 안정적인 이미지, 즉 외부 에너지를 획득한다. 또한 별도로 계산된 내부 에너지를 통해 얻어진 윤곽선(contour)을 외부 에너지에 병합함으로써 빠르고 쉬운 이동물체 탐지 및 추적이 가능하다. 제안한 알고리즘의 효용성을 확인하기 위해 3가지 상황을 대상으로 실험하였다. 실험 결과, 제안한 알고리즘이 기존 스네이크 알고리즘에 비해 탐지율은 평균 6$\sim$9%, 추적율은 6$\sim$11% 정도의 향상을 보였다.
이 논문에서는 CAMshift 알고리즘과 칼만 필터(Kalman filter) 알고리즘을 결합하여 강건하게 개선된 추적모듈에 관해서 기술한다. 물체를 추적할 때 사용되는 CAMshift 알고리즘은 추적과정에서 탐색 윈도우를 설정할 때 물체가 이동하는 방향 및 속도를 고려하지 않는다는 단점이 있었다. 이를 해결하기 위해 칼만 필터 알고리즘을 추가한다면 현재 물체의 위치 및 속도 등의 정보를 바탕으로 다음 순간의 물체 위치를 추정할 수 있게 된다. 이 추정값을 기준으로 CAMshift 추적 시 탐색 윈도우를 재설정함으로써, 기존 CAMshift 알고리즘만으로는 추적이 불가능한 고속 이동물체에 대해서도 보다 정확한 추적이 가능하게 되었다. 또 본 연구에서는 추적 대상의 HSV와 YCrCb 두 색상정보를 동시에 고려함으로써 단일 색정보를 이용하는 검출보다 더 강인한 결과를 얻을 수 있었다.
칼라는 물체의 특성을 나타내는 고유한 성질 중의 하나로 칼라 정보를 이용하면 물체를 추적하는데 많은 도움을 얻을 수 있다. 그러나 동일한 칼라의 물체일지라도 조명의 상태나 물체의 형태 등에 따라 실제 이미지 상에 나타나는 칼라는 조금씩 다른 칼라값을 갖는다. 따라서 칼라를 이용하여 물체를 표현하기 위해서는 이미지 상에 나타나는 이러한 물체의 칼라 분포를 효과적으로 모델링할 수 있는 방법이 필요하다. 또한 한번 모델링된 칼라일지라도 물체가 이동하거나 조명이 변화하게 되면 칼라의 분포가 변화하므로 모델링된 칼라가 이러한 변화에도 적절히 대응할 수 있어야 칼라 정보를 이용하여 물체를 추적할 수 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 물체의 칼라 분포를 look-up table을 이용하여 모델링하고 추적하는 물체의 칼라 정보를 이용하여 모델링된 칼라 분포를 다시 갱신하는 적응형 look-up table 방법을 제시하였다. 적응형 look-up table은 모든 칼라값을 테이블로 표현하므로 어떠한 칼라 분포도 모델링할 수 있으며 연산시 단순 참조 방식으로 처리되기 때문에 빠른 계산이 가능하다. 또한 look-up table은 지속적으로 갱신되므로 조명의 변화나 물체의 이동 등으로 인한 칼라 분포의 변화에도 적절히 대응할 수 있다. 본 논문에서는 칼라 정보를 이용하여 물체를 추적하는데 적응형 look-up table을 이용함으로써 적응형 look-up table의 타당성을 검증하였다.
현재의 영상정보를 이용한 이동물체 검출 알고리즘에서는 물체를 인식하는데 많은 처리시간을 소비한다. 이는 물체의 특징을 사용하여 대상 물체를 일치시키기 위해 대량의 컨볼루션 처리를 하기 때문이다. 따라서, 본 논문에서는 움직이는 물체에 대한 효율적인 궤적 추적 알고리즘의 하나로 행렬필터를 제시하고, 이를 적용한 어플리케이션을 통하여 이를 검증하려 한다.
본 논문에서는 Particle filter를 이용한 특징 벡터 기반 이동 물체 추적 알고리즘을 제안한다. 이를 위해, 첫 번째, RGB 칼라 모델을 이용하여 초기 이동 물체의 움직임 영역(blob)을 추출하고, KLT-알고리즘을 이용하여 입력 영상에 대한 특징 벡터를 구한다. 그 다음, 초기 추출된 이동 물체의 움직임 영역에 이 특징 벡터를 매칭시켜 1차 특징 벡터를 구한다. 두 번째로, RGB와 HSI 칼라모델을 이용하여 이동 물체의 움직임 영역을 추출하고, 앞서 구한 1차 특징 벡터에 Snake 알고리즘을 적용함으로써 새로운 특징 벡터를 구한다. 그 다음, 기 추출된 이동 물체의 움직임 영역에 이 새롭게 구한 특징 벡터를 매칭시켜 2차 특징 벡터를 구한다. 최종적으로, 2차 특징 벡터에 Particle filter를 적용함으로써 본 논문에서 제안한 이동물체를 추적하는 알고리즘을 완성한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.
본 논문은 실시간 감시 시스템을 위한 웨이블릿(wavelet) 기반의 신경망과 불변 모멘트를 이용한 이동물체 인식과 추적 방법을 제안한다. 제안한 방법의 첫 번째인 움직임 후보영역 검출 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 물체의 움직임에 의해 화소값 변화가 발생한 후보영역을 검출한다. 두 번째인 물체 인식 단계에서는 검출된 후보영역에 웨이블릿 신경망(wavelet neural network: WNN) 기반의 인식 방법을 사용하여 추적하고자하는 물체가 포함되어 있는지를 판별한다. 세 번째인 물체 추적 단계에서는 인식된 물체에 웨이블릿 불변 모멘트(invariant moments) 기반의 매칭 방법을 사용하여 인식된 이동 물체를 추적한다. 영상내에서 이동물체를 검출하기 위해 본 논문에서는 이전 영상과 현재 영상간의 화소밝기 차이에서 적응적 임계값(adaptive threholding)을 사용하여 주위 환경 변화에 강인한 이동물체 검출이 가능하였다. 또한 물체의 인식과 추적을 위해 웨이블릿 특징값을 사용함으로써, 계산 시간의 감소와 영상의 잡음에 의한 영향을 최소화시킬 수 있을 뿐만 아니라, 물체 인식 정확도가 향상되었다. 제안한 방법을 일반 도로에서 획득한 영상에서 실험한 결과, 자동차 검출율은 92.8%, 프레임당 처리 시간은 0.24초이다. 이것을 통해 제안한 방법은 실시간 지능형 교통 감시 시스템에 유용하게 적용될 수 있음을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.