• 제목/요약/키워드: 이동물체 추적

검색결과 286건 처리시간 0.027초

이동로봇의 물체 회피 및 추적 방법 (Object Avoiding and Tracking Method of Mobile Robot)

  • 이은선;이찬호;김은실;김상훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.521-525
    • /
    • 2006
  • 본 논문에서는 초음파 및 적외선 센서와 무선 카메라를 장착한 소형 이동 로봇의 장애물 회피 및 물체 추적 방법을 제시한다. 장애물 회피를 위해서 제어부의 초음파 발생 신호의 귀환시간과 거리와의 관계 및 적외선 센서에서 측정한 아날로그신호와 거리와의 관계를 추출하여 이동 로봇과 물체와의 거리를 판단하여 로봇의 움직임을 제어하는데 사용한다. 물체 추적 모드에서는 첫째, 물체와 배경 및 유사잡음들과의 강인한 분리를 위하여 고유색상정보와 움직임 정보 등의 사전정보를 활용하였으며 둘째, 형태의 변화가 수반되는 경우에도 유연한 대처능력을 갖도록 하기 위해 영상의 영역분할 방법을 통해 모든 후보영역내의 물체의 존재를 확인하고 물체영역만을 추출하였다. 셋째, 물체 형태정보함수를 정의하고 해당함수를 형태의 보전 에너지로 활용하여 동일 물체의 대응문제를 효과적으로 해결하였다.

  • PDF

부분적 폐색에 강건한 활동적 퓨전 모델 (Active Fusion Model with Robustness against Partial Occlusions)

  • 이중재;이근수;김계영
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.35-46
    • /
    • 2006
  • 이동 물체 추적에 있어서 배경과 이동 물체의 동적인 변화는 폐색이라는 문제를 발생시키는 중요한 원인이다. 그리고 이러한 폐색이 발생하는 환경에서는 이동 물체 추적의 정확도가 현저하게 감소한다 따라서 본 논문에서는 배경 또는 다른 물체에 의해 발생하는 부분적 폐색에 강건한 활동적 퓨전 모델을 제안한다. 활동적 퓨전 모델은 이동 물체의 경계선 특징을 기반으로 하는 전통적인 기존의 스네이크 모델과 경계선 내부의 영역 특징을 고려하는 영역 기반 스네이크 모델로 구성된다. 이것은 먼저 이동 물체에 발생하는 부분적 폐색의 종류를 윤곽선 폐색과 영역폐색으로 구분한 뒤 폐색이 발생하는 위치와 폐색량에 따라서 각 모델의 신뢰도를 조절함으로써 부분적 폐색문제를 극복한다. 실험 결과에서는 부분적으로 폐색이 발생하는 환경에서 기본 방법들이 이동물체 추적에 실패하는 반면에 제안하는 방법은 추적에 성공함을 보인다.

움직임 예측을 이용한 무인항공기 영상에서의 이동 객체 추적 (Moving Object Tracking in UAV Video using Motion Estimation)

  • 오훈걸;이형진;백중환
    • 한국항행학회논문지
    • /
    • 제10권4호
    • /
    • pp.400-405
    • /
    • 2006
  • 본 논문에서는 무인항공기 영상에서 움직임 예측을 이용한 이동 물체 추적 알고리즘을 제안하였다. 제안한 알고리즘은 초기모델 생성단계와 이동 물체 추적 단계로 구성되어있으며, 이전 프레임에 비해 이동 거리가 커진 경우에도 안정적으로 추적할 수 있었다. 그리고 무인항공기 카메라의 흔들림에도 효과적으로 추적을 할 수 있었고, 이동 물체의 위치를 정확히 검출하여 추적시간을 단축할 수 있었다. 블록 영상과 참조 영상 간 이동물체의 유사도 판정은 블록 매칭 알고리즘을 사용하였다. 제안한 알고리즘은 실험을 통해서 기존의 전역탐색 알고리즘보다 향상된 결과를 보여주었다.

  • PDF

Depth 정보를 이용한 CamShift 추적 알고리즘의 성능 개선 (Performance Improvement of Camshift Tracking Algorithm Using Depth Information)

  • 주성욱;최한고
    • 융합신호처리학회논문지
    • /
    • 제18권2호
    • /
    • pp.68-75
    • /
    • 2017
  • 본 연구에서는 이동 물체의 색상이 배경 내 색상과 동일하거나 유사한 색상이 존재하는 경우 컬러기반에서 효과적으로 이동 물체의 추적 방법을 다루고 있다. 대표적인 컬러 기반 추적방법인 CamShift 알고리즘은 배경 영상에 이동물체의 색상이 존재하는 경우 불안정한 추적을 보여주고 있다. 이러한 단점을 극복하기 위해 본 논문에서는 물체의 Depth 정보를 병합한 CamShift 알고리즘을 제안하고 있다. Depth 정보 영상의 모든 픽셀의 거리정보를 측정하는 Kinect 장치로부터 구할 수 있다. 실험결과 이동물체의 거리정보를 병합시킨 제안된 추적 방법은 기존 CamShift 알고리즘의 불안정한 추적기능을 보완하였고, CamShift 알고리즘만 사용한 경우와 비교해 볼 때 추적성능을 향상시켰다.

  • PDF

이동물체 탐지 및 추적을 위한 에너지 보정 스네이크(ECS) 알고리즘의 실험 및 평가 (Experimentation and Evaluation of Energy Corrected Snake(ECS) Algorithm for Detection and Tracking the Moving Object)

  • 양성실;윤희병
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.289-298
    • /
    • 2009
  • 능동 윤곽선 모델, 즉 스네이크 알고리즘은 물체 탐지 및 추적에 사용되는 유용한 알고리즘이다. 그러나 이 알고리즘은 요소별 가중치 부여 및 반복단계 시 많은 변수가 필요하고, 초기화 애로 및 계산상 불안정성 등의 단점이 있다. 따라서 본 논문에서는 이러한 단점을 개선하여 보다 효과적인 이동물체 탐지 및 추적을 위해 기존 스네이크 알고리즘의 외부 에너지를 개선한 새로운 에너지 보정 스네이크(ECS) 알고리즘을 제안한다. 이를 위해 이동물체 이동 시 획득한 차영상 이미지를 4개의 방향성 이미지로 복사하고 각 이미지 픽셀에 대해 누적 연산 후 에너지 강화배열 내 저장 및 노이즈 제거를 통해 안정적인 이미지, 즉 외부 에너지를 획득한다. 또한 별도로 계산된 내부 에너지를 통해 얻어진 윤곽선(contour)을 외부 에너지에 병합함으로써 빠르고 쉬운 이동물체 탐지 및 추적이 가능하다. 제안한 알고리즘의 효용성을 확인하기 위해 3가지 상황을 대상으로 실험하였다. 실험 결과, 제안한 알고리즘이 기존 스네이크 알고리즘에 비해 탐지율은 평균 6$\sim$9%, 추적율은 6$\sim$11% 정도의 향상을 보였다.

CAMshift 기법과 칼만 필터를 결합한 객체 추적 시스템 (Object-Tracking System Using Combination of CAMshift and Kalman filter Algorithm)

  • 김대영;박재완;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제16권5호
    • /
    • pp.619-628
    • /
    • 2013
  • 이 논문에서는 CAMshift 알고리즘과 칼만 필터(Kalman filter) 알고리즘을 결합하여 강건하게 개선된 추적모듈에 관해서 기술한다. 물체를 추적할 때 사용되는 CAMshift 알고리즘은 추적과정에서 탐색 윈도우를 설정할 때 물체가 이동하는 방향 및 속도를 고려하지 않는다는 단점이 있었다. 이를 해결하기 위해 칼만 필터 알고리즘을 추가한다면 현재 물체의 위치 및 속도 등의 정보를 바탕으로 다음 순간의 물체 위치를 추정할 수 있게 된다. 이 추정값을 기준으로 CAMshift 추적 시 탐색 윈도우를 재설정함으로써, 기존 CAMshift 알고리즘만으로는 추적이 불가능한 고속 이동물체에 대해서도 보다 정확한 추적이 가능하게 되었다. 또 본 연구에서는 추적 대상의 HSV와 YCrCb 두 색상정보를 동시에 고려함으로써 단일 색정보를 이용하는 검출보다 더 강인한 결과를 얻을 수 있었다.

적응형 칼라 Look-up Table을 이용한 물체의 추적 (Color Object Tracking using Adaptive Look-up Table)

  • 박현근;김도윤;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2714-2716
    • /
    • 2000
  • 칼라는 물체의 특성을 나타내는 고유한 성질 중의 하나로 칼라 정보를 이용하면 물체를 추적하는데 많은 도움을 얻을 수 있다. 그러나 동일한 칼라의 물체일지라도 조명의 상태나 물체의 형태 등에 따라 실제 이미지 상에 나타나는 칼라는 조금씩 다른 칼라값을 갖는다. 따라서 칼라를 이용하여 물체를 표현하기 위해서는 이미지 상에 나타나는 이러한 물체의 칼라 분포를 효과적으로 모델링할 수 있는 방법이 필요하다. 또한 한번 모델링된 칼라일지라도 물체가 이동하거나 조명이 변화하게 되면 칼라의 분포가 변화하므로 모델링된 칼라가 이러한 변화에도 적절히 대응할 수 있어야 칼라 정보를 이용하여 물체를 추적할 수 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 물체의 칼라 분포를 look-up table을 이용하여 모델링하고 추적하는 물체의 칼라 정보를 이용하여 모델링된 칼라 분포를 다시 갱신하는 적응형 look-up table 방법을 제시하였다. 적응형 look-up table은 모든 칼라값을 테이블로 표현하므로 어떠한 칼라 분포도 모델링할 수 있으며 연산시 단순 참조 방식으로 처리되기 때문에 빠른 계산이 가능하다. 또한 look-up table은 지속적으로 갱신되므로 조명의 변화나 물체의 이동 등으로 인한 칼라 분포의 변화에도 적절히 대응할 수 있다. 본 논문에서는 칼라 정보를 이용하여 물체를 추적하는데 적응형 look-up table을 이용함으로써 적응형 look-up table의 타당성을 검증하였다.

  • PDF

이동물체 검출을 위한 행렬필터 알고리즘 (A Moving Object Detecting Algorithm Using a Matrix Filter)

  • 최승욱;허화라;이장명
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.150-153
    • /
    • 2003
  • 현재의 영상정보를 이용한 이동물체 검출 알고리즘에서는 물체를 인식하는데 많은 처리시간을 소비한다. 이는 물체의 특징을 사용하여 대상 물체를 일치시키기 위해 대량의 컨볼루션 처리를 하기 때문이다. 따라서, 본 논문에서는 움직이는 물체에 대한 효율적인 궤적 추적 알고리즘의 하나로 행렬필터를 제시하고, 이를 적용한 어플리케이션을 통하여 이를 검증하려 한다.

  • PDF

Particle filter를 이용한 이동 물체 추적 알고리즘 (Mobile Object Tracking Algorithm Using Particle Filter)

  • 김세진;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.586-591
    • /
    • 2009
  • 본 논문에서는 Particle filter를 이용한 특징 벡터 기반 이동 물체 추적 알고리즘을 제안한다. 이를 위해, 첫 번째, RGB 칼라 모델을 이용하여 초기 이동 물체의 움직임 영역(blob)을 추출하고, KLT-알고리즘을 이용하여 입력 영상에 대한 특징 벡터를 구한다. 그 다음, 초기 추출된 이동 물체의 움직임 영역에 이 특징 벡터를 매칭시켜 1차 특징 벡터를 구한다. 두 번째로, RGB와 HSI 칼라모델을 이용하여 이동 물체의 움직임 영역을 추출하고, 앞서 구한 1차 특징 벡터에 Snake 알고리즘을 적용함으로써 새로운 특징 벡터를 구한다. 그 다음, 기 추출된 이동 물체의 움직임 영역에 이 새롭게 구한 특징 벡터를 매칭시켜 2차 특징 벡터를 구한다. 최종적으로, 2차 특징 벡터에 Particle filter를 적용함으로써 본 논문에서 제안한 이동물체를 추적하는 알고리즘을 완성한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.

웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법 (Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments)

  • 김종배
    • 대한전자공학회논문지SP
    • /
    • 제45권4호
    • /
    • pp.10-21
    • /
    • 2008
  • 본 논문은 실시간 감시 시스템을 위한 웨이블릿(wavelet) 기반의 신경망과 불변 모멘트를 이용한 이동물체 인식과 추적 방법을 제안한다. 제안한 방법의 첫 번째인 움직임 후보영역 검출 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 물체의 움직임에 의해 화소값 변화가 발생한 후보영역을 검출한다. 두 번째인 물체 인식 단계에서는 검출된 후보영역에 웨이블릿 신경망(wavelet neural network: WNN) 기반의 인식 방법을 사용하여 추적하고자하는 물체가 포함되어 있는지를 판별한다. 세 번째인 물체 추적 단계에서는 인식된 물체에 웨이블릿 불변 모멘트(invariant moments) 기반의 매칭 방법을 사용하여 인식된 이동 물체를 추적한다. 영상내에서 이동물체를 검출하기 위해 본 논문에서는 이전 영상과 현재 영상간의 화소밝기 차이에서 적응적 임계값(adaptive threholding)을 사용하여 주위 환경 변화에 강인한 이동물체 검출이 가능하였다. 또한 물체의 인식과 추적을 위해 웨이블릿 특징값을 사용함으로써, 계산 시간의 감소와 영상의 잡음에 의한 영향을 최소화시킬 수 있을 뿐만 아니라, 물체 인식 정확도가 향상되었다. 제안한 방법을 일반 도로에서 획득한 영상에서 실험한 결과, 자동차 검출율은 92.8%, 프레임당 처리 시간은 0.24초이다. 이것을 통해 제안한 방법은 실시간 지능형 교통 감시 시스템에 유용하게 적용될 수 있음을 알 수 있다.