본 논문에서는 획득 영상에서 k-평균 알고리즘에 의한 무게중심을 이용하여 이동 물체를 검출하고 추적하는 방법을 제안하였다. 이동 물체의 검출은 획득 영상에 대하여 차영상 후 에지 검출에 의해 수행된다. 제안한 검출 방법은 빛의 밝기와 각도에 의해 발생된 그림자 등의 변형을 제거하고, 이동 물체만을 검출할 수 있어, 빛에 영향을 받은 영상에 대해서도 이동 물체를 양호하게 검출할 수 있다. 물체 추적은 검출된 이동 물체에 대하여 k-평균 알고리즘으로 세 개의 물체 무게중심을 구하고, 무게중심 부근의 화소 평균값과 무게중심간의 거리를 구한다. 다음 프레임들에 대하여 탐색영역의 화소 평균값에 의해 후보 무게중심을 구하고, 물체 무게중심과 구한 후보 무게중심들의 표준편차와 무게중심간의 거리 차를 이용하여 이동 물체를 추적한다. 그 결과, 이동 물체의 추적 속도를 개선시켰고, 물체 추적 오차율을 줄였다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.1
/
pp.142-151
/
2015
This paper proposes a method for detection of objects temporally stop moving in video sequences taken by a moving camera. Even though the consequence of missed detection of those objects could be catastrophic in terms of application level requirements, not much attention has been paid in conventional approaches. In the proposed method, we introduce cues for consistent detection and tracking of objects: motion potential, position potential, and color distribution similarity. Integration of the three cues in the graph-cut algorithm makes possible to detect objects that temporally stop moving and are newly appearing. Experiment results prove that the proposed method can not only detect moving objects but also track objects stop moving.
In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.
Proceedings of the Korea Multimedia Society Conference
/
2003.05b
/
pp.150-153
/
2003
현재의 영상정보를 이용한 이동물체 검출 알고리즘에서는 물체를 인식하는데 많은 처리시간을 소비한다. 이는 물체의 특징을 사용하여 대상 물체를 일치시키기 위해 대량의 컨볼루션 처리를 하기 때문이다. 따라서, 본 논문에서는 움직이는 물체에 대한 효율적인 궤적 추적 알고리즘의 하나로 행렬필터를 제시하고, 이를 적용한 어플리케이션을 통하여 이를 검증하려 한다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.531-534
/
2006
능동 카메라에서 배경과 물체가 모두 움직이는 영상에서 이동물체를 검출하여 추적하기 위해 특징점을 추출하고 특징점을 이용해 영상 좌표계 변환 파라미터를 추정하여 카메라의 Ego-motion을 보정한다. 보정된 영상을 이용하여 움직이는 물체를 검출하고 잡음이 있는 관측영역에서 CONDENSATION 알고리즘을 이용하여 이동물체를 추정하는 실험을 수행한 내용의 논문이다.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2007.05a
/
pp.1-8
/
2007
본 논문은 저해상도와 많은 노이즈를 갖는 일반 CCTV의 입력 영상에서 실시간으로 움직이는 물체를 검출하고 그 물체의 움직임을 추적하는 방법을 제안 한다. 본 논문은 CCTV영상으로부터의 입력 영상을 순차를 갖는 명암도 영상으로 실시간 변환 하여 진행 한다. 움직이는 물체의 추출은 첫째, 획득한 영상의 그레이 영상을 포스터라이징을 이용하여 명암 분포를 축소하고 차영상을 통해 윤곽을 추출한다. 둘째, 본 논문이 제안하는 영역 단위 이진화를 통해 이진화와 잡음의 제거를 동시에 수행한다. 셋째, 손실된 정보의 보정을 위해 이진 영상의 팽창을 수행한다. 넷째, 이진 영상의 가로/세로 명암 밀도 분포를 통해 움직이는 물체 영역을 검출한다. 검출된 물체의 추적은 현 재 프레임의 물체 영역과 이전 프레임의 물체 영역의 중심을 계산한 후, 두 중심의 거리 차를 계산한다. 계산된 거리가 임계값보다 작을 경우 같은 물체로 인식하고 계속 추적하며, 임계값 이상의 값일 경우 새로운 물체로 인식한다. 추적된 이동물체의 중심점이 화면의 중앙 부분에 있지 않을 경우, 이동물체의 중심으로 카메라의 방향을 조정한다. 실험결과, 제안한 방법으로 저해상도와 많은 노이즈를 갖는 일반 CCTV 의 입력 영상에서도 실시간으로 움직이는 물체를 검출하고, 그 물체의 움직임을 추적 할 수 있었다.
In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.
Journal of the Korea Society of Computer and Information
/
v.13
no.6
/
pp.1-12
/
2008
This paper presents automatic moving object detection method using the rotating camera covering larger area with a single camera. The proposed method is based on the edge segment matching which robust to the dynamic environment with illumination change and background movement. The proposed algorithm presents an edge segment based background panorama image generation method minimizing the distortion due to image stitching, the background image generation method using Generalized Hough Transformation which can reliably register the current image to the panorama image overcoming the stitching distortions, the moving edge segment extraction method that overcome viewpoint difference and distortion. The experimental results show that the proposed method can detect correctly moving object under illumination change and camera vibration.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.8A
/
pp.822-828
/
2002
Optical flow estimation based on multi constraint approaches is frequently used for recognition of moving objects. However, the use have been confined because of OF estimation time as well as error problem. This paper shows a new method form effectively extracting movement information using the multi-constraint base approaches with sobel edge detection. The moving objects anr extraced in the input image sequence using edge detection and segmentation. Edge detection and difference of the two input image sequence gives us the moving objects in the images. The process of thresholding removes the moving objects detected due to noise. After thresholding the real moving objects, we applied the Combinatorial Hough Transform (CHT) and voting accumulation to find the optimal constraint lines for optical flow estimation. The moving objects found in the two consecutive images by using edge detection and segmentation greatly reduces the time for comutation of CHT. The voting based CHT avoids the errors associated with least squares methods. Calculation of a large number of points along the constraint line is also avoided by using the transformed slope-intercept parameter domain. The simulation results show that the proposed method is very effective for extracting optical flow vectors and hence recognizing moving objects in the images.
사생활 보호에 대한 인식이 커지고, 인터넷 시대에 접어들면서 네트워크 기반의 보안시스템의 개발이 활발하다. 실시간 비디오 카메라를 통한 움직이는 물체를 검출하기 위해서는 불필요한 잡음이나 조명의 변화에 대처해야 한다. 이러한 많은 요소들을 고려하여 움직이는 물체를 검출하려면 많은 계산 복잡도를 가지게 된다. 또한, 카메라의 영상크기가 증가함에 따라 움직이는 물체를 검출하기 위해서 더 많은 계산 복잡도를 가지게 된다. 본 논문에서는 기존의 통상적인 움직임 검출방법 과 적응적 배경방식인 '물체 검출을 위한 동적인 장면의 베이시안 모델링 기반 물체 검출 방법'을 분석하고, 실시간으로 처리되는 동적 비디오 영상에서 이동 물체를 검출하는 과정에서의 영상의 크기가 커지고, 이동하는 물체의 개수가 많아짐에 따라 발생되는 계산의 복잡도를 'CPU 성능과 영상 resize 를 이용한 계산 복잡도 감소 방법'을 통해 초당 프레임 처리속도를 유지시키는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.