• Title/Summary/Keyword: 이동물체 검출

Search Result 166, Processing Time 0.027 seconds

Detection and Tracking of Moving Objects using it and Determination of Centroid by k-means Algorithm (k-평균 알고리즘에 의한 무게중심의 결정과 이를 이용한 이동 물체의 검출 및 추적)

  • Lee, Eun-Mi;Lee, Byung-Sun;Rhee, Eun-Joo
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.629-632
    • /
    • 2002
  • 본 논문에서는 획득 영상에서 k-평균 알고리즘에 의한 무게중심을 이용하여 이동 물체를 검출하고 추적하는 방법을 제안하였다. 이동 물체의 검출은 획득 영상에 대하여 차영상 후 에지 검출에 의해 수행된다. 제안한 검출 방법은 빛의 밝기와 각도에 의해 발생된 그림자 등의 변형을 제거하고, 이동 물체만을 검출할 수 있어, 빛에 영향을 받은 영상에 대해서도 이동 물체를 양호하게 검출할 수 있다. 물체 추적은 검출된 이동 물체에 대하여 k-평균 알고리즘으로 세 개의 물체 무게중심을 구하고, 무게중심 부근의 화소 평균값과 무게중심간의 거리를 구한다. 다음 프레임들에 대하여 탐색영역의 화소 평균값에 의해 후보 무게중심을 구하고, 물체 무게중심과 구한 후보 무게중심들의 표준편차와 무게중심간의 거리 차를 이용하여 이동 물체를 추적한다. 그 결과, 이동 물체의 추적 속도를 개선시켰고, 물체 추적 오차율을 줄였다.

  • PDF

Detection of Objects Temporally Stop Moving with Spatio-Temporal Segmentation (시공간 영상분할을 이용한 이동 및 이동 중 정지물체 검출)

  • Kim, Do-Hyung;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.142-151
    • /
    • 2015
  • This paper proposes a method for detection of objects temporally stop moving in video sequences taken by a moving camera. Even though the consequence of missed detection of those objects could be catastrophic in terms of application level requirements, not much attention has been paid in conventional approaches. In the proposed method, we introduce cues for consistent detection and tracking of objects: motion potential, position potential, and color distribution similarity. Integration of the three cues in the graph-cut algorithm makes possible to detect objects that temporally stop moving and are newly appearing. Experiment results prove that the proposed method can not only detect moving objects but also track objects stop moving.

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

A Moving Object Detecting Algorithm Using a Matrix Filter (이동물체 검출을 위한 행렬필터 알고리즘)

  • 최승욱;허화라;이장명
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.150-153
    • /
    • 2003
  • 현재의 영상정보를 이용한 이동물체 검출 알고리즘에서는 물체를 인식하는데 많은 처리시간을 소비한다. 이는 물체의 특징을 사용하여 대상 물체를 일치시키기 위해 대량의 컨볼루션 처리를 하기 때문이다. 따라서, 본 논문에서는 움직이는 물체에 대한 효율적인 궤적 추적 알고리즘의 하나로 행렬필터를 제시하고, 이를 적용한 어플리케이션을 통하여 이를 검증하려 한다.

  • PDF

Moving Object Detection using Single Active Camera (능동 카메라를 이용한 이동물체 검출)

  • Kim, Yong-Jin;Lee, Yill-Byung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.531-534
    • /
    • 2006
  • 능동 카메라에서 배경과 물체가 모두 움직이는 영상에서 이동물체를 검출하여 추적하기 위해 특징점을 추출하고 특징점을 이용해 영상 좌표계 변환 파라미터를 추정하여 카메라의 Ego-motion을 보정한다. 보정된 영상을 이용하여 움직이는 물체를 검출하고 잡음이 있는 관측영역에서 CONDENSATION 알고리즘을 이용하여 이동물체를 추정하는 실험을 수행한 내용의 논문이다.

  • PDF

Detection and Tracking of Moving Object in Moving Camera Images (이동 카메라 영상에서 움직이는 물체 검출 및 추적)

  • Oh, Yoon-Hwan;Rhee, Eun-Joo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.1-8
    • /
    • 2007
  • 본 논문은 저해상도와 많은 노이즈를 갖는 일반 CCTV의 입력 영상에서 실시간으로 움직이는 물체를 검출하고 그 물체의 움직임을 추적하는 방법을 제안 한다. 본 논문은 CCTV영상으로부터의 입력 영상을 순차를 갖는 명암도 영상으로 실시간 변환 하여 진행 한다. 움직이는 물체의 추출은 첫째, 획득한 영상의 그레이 영상을 포스터라이징을 이용하여 명암 분포를 축소하고 차영상을 통해 윤곽을 추출한다. 둘째, 본 논문이 제안하는 영역 단위 이진화를 통해 이진화와 잡음의 제거를 동시에 수행한다. 셋째, 손실된 정보의 보정을 위해 이진 영상의 팽창을 수행한다. 넷째, 이진 영상의 가로/세로 명암 밀도 분포를 통해 움직이는 물체 영역을 검출한다. 검출된 물체의 추적은 현 재 프레임의 물체 영역과 이전 프레임의 물체 영역의 중심을 계산한 후, 두 중심의 거리 차를 계산한다. 계산된 거리가 임계값보다 작을 경우 같은 물체로 인식하고 계속 추적하며, 임계값 이상의 값일 경우 새로운 물체로 인식한다. 추적된 이동물체의 중심점이 화면의 중앙 부분에 있지 않을 경우, 이동물체의 중심으로 카메라의 방향을 조정한다. 실험결과, 제안한 방법으로 저해상도와 많은 노이즈를 갖는 일반 CCTV 의 입력 영상에서도 실시간으로 움직이는 물체를 검출하고, 그 물체의 움직임을 추적 할 수 있었다.

  • PDF

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.

Moving Object Detection with Rotating Camera Based on Edge Segment Matching (이동카메라 환경에서의 에지 세그먼트 정합을 통한 이동물체 검출)

  • Lee, June-Hyung;Chae, Ok-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • This paper presents automatic moving object detection method using the rotating camera covering larger area with a single camera. The proposed method is based on the edge segment matching which robust to the dynamic environment with illumination change and background movement. The proposed algorithm presents an edge segment based background panorama image generation method minimizing the distortion due to image stitching, the background image generation method using Generalized Hough Transformation which can reliably register the current image to the panorama image overcoming the stitching distortions, the moving edge segment extraction method that overcome viewpoint difference and distortion. The experimental results show that the proposed method can detect correctly moving object under illumination change and camera vibration.

  • PDF

Information extraction of the moving objects based on edge detection and optical flow (Edge 검출과 Optical flow 기반 이동물체의 정보 추출)

  • Chang, Min-Hyuk;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.822-828
    • /
    • 2002
  • Optical flow estimation based on multi constraint approaches is frequently used for recognition of moving objects. However, the use have been confined because of OF estimation time as well as error problem. This paper shows a new method form effectively extracting movement information using the multi-constraint base approaches with sobel edge detection. The moving objects anr extraced in the input image sequence using edge detection and segmentation. Edge detection and difference of the two input image sequence gives us the moving objects in the images. The process of thresholding removes the moving objects detected due to noise. After thresholding the real moving objects, we applied the Combinatorial Hough Transform (CHT) and voting accumulation to find the optimal constraint lines for optical flow estimation. The moving objects found in the two consecutive images by using edge detection and segmentation greatly reduces the time for comutation of CHT. The voting based CHT avoids the errors associated with least squares methods. Calculation of a large number of points along the constraint line is also avoided by using the transformed slope-intercept parameter domain. The simulation results show that the proposed method is very effective for extracting optical flow vectors and hence recognizing moving objects in the images.

A Method Sustaining Frame Process Rate on Object Detection of Bayesian Modeling (베이시안 모델링 물체 검출에 관한 초당 프레임 처리량 유지 기법)

  • Su-Kwang Shin;Hee-Yong Youn
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • 사생활 보호에 대한 인식이 커지고, 인터넷 시대에 접어들면서 네트워크 기반의 보안시스템의 개발이 활발하다. 실시간 비디오 카메라를 통한 움직이는 물체를 검출하기 위해서는 불필요한 잡음이나 조명의 변화에 대처해야 한다. 이러한 많은 요소들을 고려하여 움직이는 물체를 검출하려면 많은 계산 복잡도를 가지게 된다. 또한, 카메라의 영상크기가 증가함에 따라 움직이는 물체를 검출하기 위해서 더 많은 계산 복잡도를 가지게 된다. 본 논문에서는 기존의 통상적인 움직임 검출방법 과 적응적 배경방식인 '물체 검출을 위한 동적인 장면의 베이시안 모델링 기반 물체 검출 방법'을 분석하고, 실시간으로 처리되는 동적 비디오 영상에서 이동 물체를 검출하는 과정에서의 영상의 크기가 커지고, 이동하는 물체의 개수가 많아짐에 따라 발생되는 계산의 복잡도를 'CPU 성능과 영상 resize 를 이용한 계산 복잡도 감소 방법'을 통해 초당 프레임 처리속도를 유지시키는 방법을 제시한다.