• Title/Summary/Keyword: 이격 거리

Search Result 691, Processing Time 0.025 seconds

Dose Distribution Study for Quantitative Evaluation when using Radioisotope (99mTc, 18F) Sources (방사성 동위원소 (99mTc, 18F) 선원 사용 시 인체 내부피폭의 정량적 평가를 위한 선량분포 연구)

  • Ji, Young-Sik;Lee, Dong-Yeon;Yang, Hyun-Gyung
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.603-609
    • /
    • 2022
  • The dose distribution in the human body was evaluated and analyzed through dosimetry data using water phantom, ionization chamber and simulated by Monte Carlo simulation for 99mTc and 18F sources, which are frequently used in the nuclear medicine in this study. As a result of this study, it was found that the dose decreased exponentially as the distance from the radioisotope increased, and it particularly showed a tendency to decrease sharply when the radioisotope was separated by 5 cm. It means that a large amount of dose is delivered to an organ located within 4 cm of source's movement path when a source uptake in the human body. Numerically, it was formed in the rage of 0.16 to 2.16 pC/min for 99mTc and 0.49 to 9.29 pC/min for 18F. In addition, the energy transfer coefficient calculated using the result was found to be similar to the measured value and the simulation value in the range of 0.240 to 0.260. Especially, when the measured data and the simulation value were compared, there was a difference is within 2%, so the reliability of the data was secured. In this study, the distribution of radiation generated from a source was calculated to quantitatively evaluate the internal dose by radioisotopes. It presented reliable results through comparative analysis of the measurement value and simulation value. Above all, it has a great significance to the point that it was presented by directly measuring the distribution of radiation in the human body.

A Study on the Dynamic Effect Influencing to Urban Railway Structures by Vibration from Near-field Excavating Work (근접장 굴착진동이 도시철도 구조물에 미치는 동적영향 연구)

  • Woo-Jin, Han;Seung-Ju, Jang;Sang-Soo, Bae;Seung-Yup, Jang;Myung-Seok, Bang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.41-53
    • /
    • 2022
  • In the excavation work like blasting/excavator work bordering on the urban railway, the dynamic safety of railway structures like tunnel, open-cut box structure and elevated bridge was investigated by numerical analysis in this study. The practically presented criteria on influential zones at the blasting work in the construction industry was numerically checked in cases of the precise vibration-controlled blasting (type II) and the small scale vibration-controlled blasting (type III) and it was shown that the criteria on blasting work methods needed to be supplemented through continuous field tests and numerical analyses. The influence of excavation vibration by mechanical excavators was especially investigated in case of earth auger and breaker. The numerical analysis of tunnel shows that the criteria on vibration velocities from the regression analysis of field test values was conservative. The amplification phenomenon of excavating vibration velocity was shown passing through the backfilling soil between the earth auger and the open-cut box structure. It was shown that the added-vibration on the superstructure of elevated bridge was occurred at the bottom of pile like earthquake when the excavator vibration was arriving at the pile toe. The systematic and continuous research on the vibration effect from excavating works was needed for the safety of urban railway structures and nearby facilities.

A Study on Track Deformation Characteristics of Turnout System by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 도시철도 분기기 궤도의 변형 특성에 관한 연구)

  • Kim, Hae-Sung;Choi, Jung-Youl;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.477-482
    • /
    • 2022
  • The structure of the turnout track is very complex, so it is a facility that is more difficult to maintain and requires detailed management than a general track type. The purpose of this study is to analyze the effect on the deformation of the turnout system of the ground section due to the excavation work adjacent to the serviced urban railways. In this study, based on finite element analysis for each stage of adjacent excavation, the track deformation for each major location of turnout system was analyzed in consideration of the layout of the turnout system installed on the ground section, and the safety and stability was confirmed by comparing it with the track irregularity regulation. As a result of the study, it was found that the major construction stage affecting the track deformation of the turnout system on the ground section was the final stage of excavation. In addition, although the vertical displacement which is a vertical irregularity occurred relatively large, it was analyzed that the horizontal deformation was dominant overall, because of the excavation site is located on the side of the turnout system. In addition, it was analyzed that the amount of displacement at each major location of the turnout system is different, and there is a possibility that there may be a twist irregularity due to the deviation of the track deformation for each location according to the distance from the excavation site. Therefore, it was analyzed that it is necessary to classify and manage the importance of the track deformation of the turnout system of actual operating line, including additional displacement due to adjacent excavation, based on the track irregularity that has occurred at each location where the major deformation characteristics occur.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

A study on the location of microphones in measurement considering the frequency characteristics of elevator noise in households (세대 내 승강기 소음 주파수특성을 고려한 측정 시 마이크로폰 위치에 관한 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.124-132
    • /
    • 2023
  • When the building becomes high, the number of households increases and they are adjacent to the elevator. So, frequency of use of elevators will increase. Elevator noise is bound to increase in the future. However, there are currently no legal standards for elevator noise or measurement and evaluation methods that can clearly measure elevator noise in Korea. Although some methods for measuring elevator noise are presented in KS F ISO 16032, this standard is not a standard established for elevator noise. It is a standard that integrates the overall measurement method of building equipment and equipment, and the position of the microphone is selected by the experimenter during measurement. Elevator noise is characterized by a low sound pressure level as the noise in the mid-low frequency band is important. However, even today, complaints from residents about elevator noise are increasing. In this study, the position of the microphone that can most sensitively pick up the elevator noise when measuring the elevator noise was studied. According to the distance from the wall and the height from the floor, a total of 9 microphone positions were measured and analyzed. As a result of the experiment, it was confirmed that the elevator noise has a very high influence in the 63 Hz band. The measured value at the center point was identified as a factor that lowered the overall elevator noise level value.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

Comparative Analysis of Heavy Metal Exposure Concentrations and Volatile Organic Compound Metabolites among Residents in the Affected Area According to Residential Distance from a Coal-fired Power Plant (화력발전소 영향권 주민 거주지의 이격 거리별 중금속 및 휘발성유기화합물 대사체 노출 농도 비교 분석)

  • Jee Hyun Rho;Byoung-Gwon Kim;Jung-Yeon Kwon;Hyunji Ju;Na-Young Kim;Hyoun Ju Lim;Seungho Lee;Byeng-Chul Yu;Suejin Kim;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.25-35
    • /
    • 2024
  • Background: There are concerns about the health effects of various environmental pollution exposures among residents living near coal-fired power plants (CFPP). Objectives: This study attempted to compare the concentrations of heavy metals in blood and urine and those of urinary volatile organic compound (VOC) metabolites according to the residential separation distance. Methods: Participants in the study totaled 334 people who have lived for more than 10 years in areas within 10 km of a CFPP. The separation distance was analyzed in quartiles by dividing it into Q1 (88 people), Q2 (89 people), Q3 (89 people), and Q4 (68 people). We explained the purpose of this study to the participants and collected blood and urine after obtaining signatures on a participation agreement. Results: The study participants were 102 males (30.5%) and 232 females (69.5%), with an average age of 71. The average length of residence and distance were 43.8 years and 4,800 meters. The geometric mean concentrations of Pb, Cd, and Hg in blood and As and Cd in urine were respective 1.35 ㎍/dL, 1.43 ㎍/L, 3.16 ㎍/L. They were 167.88 ㎍/g for creatinine and 1.58 ㎍/g creatinine. The metabolite concentrations of VOCs were 50.67 ㎍/g creatinine in t, t-muconic acid (t, t-MA), 10.73 ㎍/g creatinine in benzyl mercapturic acid, 317.05 ㎍/g creatinine in phenylglyoxylic acid, 123.55 ㎍/g creatinine in methylhippuric acid, and 190.82 ㎍/g creatinine in mandelic acid. The concentration of Pb in the blood and Cd and t, t-MA in the urine of residents within affected area of the CFPP showed statistically significant differences among distance groups. Conclusions: The concentration of urinary VOCs metabolites, especially t, t-MA, differed according to the distance groups of residents within the affected area of CFPP (p<0.05).

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test (복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구)

  • Chung, Sang-Yong;Kang, Dong-Hwan;Lee, Min-Hee;Son, Joo-Hyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.48-56
    • /
    • 2006
  • Using a continuous injection tracer test at a multi-soil layer deposit, the difference of hydrodynamic dispersions in unsaturated and saturated zones were analyzed through breakthrough curves of Rhodamine WT, linear regression of concentration versus time, concentration variation rates versus time, and concentration ratio according to the distance from injection well. As a result of continuous injection tracer test, the difference of the maximum concentrations of Rhodamine WT in unsaturated and saturated zones were 13-15 times after 160 hours, and the increased rate of concentration versus time in unsaturated zone was about 10 times higher than in saturated zone. The fluctuation of Rhodamine WT breakthrough curve and concentration variation rate with time in saturated zone were larger than in unsaturated zone. Rhodamine WT concentration ratio with the distance from the injection well in saturation zone was linearly decreased faster than in unsaturated zone, and the elapsed time necessary for the concentration ratio less than 2 was longer in saturation zone. The differences resulted from the lower concentration and slower hydrodynamic dispersion of Rhodamine WT at the saturation zone of the multi-soil layer deposit, in which groundwater flow significantly flow and aquifer materials have high hydraulic heterogeneity. Effective porosity, longitudinal and transverse dispersivities were estimated $10.19{\sim}10.50%,\;0.80{\sim}1.98m$ and $0.02{\sim}0.04m$, respectively. The field longitudinal dispersivity is over 12 times larger than the laboratory longitudinal dispersivity by the scale-dependent effect.

Effects of Secondary Task on Driving Performance -Control of Vehicle and Analysis of Motion signal- (동시과제가 운전 수행 능력에 미치는 영향 -차량 통제 및 동작신호 해석을 중심으로-)

  • Mun, Kyung-Ryoul;Choi, Jin-Seung;Kang, Dong-Won;Bang, Yun-Hwan;Kim, Han-Soo;Lee, Su-Jung;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Mi-Hyun;Ji, Doo-Hwan;Min, Byung-Chan;Chung, Soon-Cheol;Taek, Gye-Rae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.4
    • /
    • pp.613-620
    • /
    • 2010
  • The purpose of this study was to quantitatively evaluate the effects of the secondary task while simulated driving using the variable indicating control of vehicle and smoothness of motion. Fifteen healthy adults having 1~2years driving experience were participated. 9 markers were attached on the subjects' upper(shoulder, elbow, Wrist) and lower(knee, ankle, toe) limbs and all subjects were instructed to keep the 30m distance with the front vehicle running at 80km/hr speed. Sending text message(STM) and searching navigation(SN) were selected as the secondary task. Experiment consisted of driving alone for 1 min and driving with secondary task for 1 min, and was defined driving and cognition blocks respectively. To indicate the effects of secondary task, coefficient of variation of distance between vehicles and lane keeping(APCV and MLCV) and jerk-cost function(JC) were analyzed. APCV was increased by 222.1% in SN block. MLCV was increased by 318.2% in STM and 308.4% in SN. JC were increased at the drivers' elbow, knee, ankle and toe, especially the total mean JC of lower limbs were increased by 218.2% in STM and 294.7% in SN. Conclusively, Performing secondary tasks while driving decreased the smoothness of motion with increased JC and disturbed the control of vehicle with increased APCV and MLCV.

  • PDF