Annual Conference on Human and Language Technology
/
2018.10a
/
pp.514-519
/
2018
본 연구에서는 세종 구문 코퍼스를 의존 구문 코퍼스로 변환할 때 사용되는 중심어 전파(Head-Percolation) 규칙에 대하여 논의한다. 한국어는 중심어-후위 언어이기 때문에 의존 구문 트리를 구축할 때 지배소를 의존소 뒤에 배치시키는 것을 원칙으로 하였다. 그러나 의존 관계에 있는 단어 사이에 지배소를 앞쪽으로 설정하는 것이 더 자연스러운 경우가 있다. 본 연구에서는 지배소를 앞쪽으로 배치시키는 것을 허용하는 중심어 전파 규칙을 채택하여 의존 구문 코퍼스를 구축해 보고 중심어 전파 규칙이 구문 분석기의 성능에 어떤 영향을 미치는지 살펴본다. 실험 결과 지배소를 앞쪽으로 설정하는 것을 허용한 경우, 0.43%의 성능 저하가 있었으나 학습 코퍼스의 일관성을 유지한다면 성능 저하의 차이를 좀 더 줄일 수 있을 것이다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.289-294
/
2022
의존구문분석은 문장을 의존관계(의존소-지배소)로 분석하는 구문분석 방법론이다. 현재 사전학습모델을 사용한 전이 학습의 딥러닝이 좋은 성능을 보이며 많이 연구되지만, 데이터셋에 의존적이며 그로 인한 자료부족 문제와 과적합의 문제가 발생한다는 단점이 있다. 본 논문에서는 언어학적 지식에 기반한 강화된 지배소-의존소 제약규칙 에지 알고리즘을 심층학습과 결합한 모델을 제안한다. TTAS 표준 가이드라인 기반 모두의 말뭉치로 평가한 결과, 최대 UAS 96.28, LAS 93.19의 성능을 보였으며, 선행연구 대비 UAS 2.21%, LAS 1.84%의 향상된 결과를 보였다. 또한 적은 데이터셋으로 학습했음에도 8배 많은 데이터셋 학습모델 대비 UAS 0.95%의 향상과 11배 빠른 학습 시간을 보였다. 이를 통해 심층학습과 언어지식의 결합이 딥러닝의 문제점을 해결할 수 있음을 확인하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.19-22
/
2018
본 논문에서는 기존 Stack Pointer Network의 의존 파싱 모델을 확장한 Bi-Stack Pointer Network를 제안한다. Stack Pointer Network는 기존의 Pointer Network에 내부 stack을 만들어 전체 문장을 읽어 dependency tree를 구성한다. stack은 tree의 깊이 우선 탐색을 통해 선정되고 Pointer Network는 stack의 top 단어(head)의 자식(child)을 선택한다. 제안한 모델은 기존의 Stack Pointer Network가 지배소(head)정보로 의존소(child)를 예측하는 부분에 Biaffine attention을 통해 의존소(child)에서 지배소(head)를 예측하는 방향을 추가하여 양방향 예측이 가능하게 한 모델이다. 실험 결과, 제안 Bi-Stack Pointer Network모델은 UAS 91.53%, LAS 90.93%의 성능을 보여주어 기존 최고 성능을 개선시켰다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.81-86
/
2014
한국어 의존 파싱은 문장 내 단어의 지배소를 찾음으로써 문장의 구조적 중의성을 해소하는 작업이다. 지배소 후위 원칙은 단어의 지배소는 자기 자신보다 뒤에 위치한다는 원리로, 한국어 구문분석을 위하여 널리 사용되는 원리이다. 본 연구에서는 한국어 지배소 후위 원리를 의존 파싱을 위한 트랜지션 시스템의 제약 조건으로 적용하여 2가지 트랜지션 시스템을 제안한다. 제안 모델은 기존 트랜지션 시스템 중 널리 사용되는 arc-standard와 arc-eager 알고리즘에 지배소 후위 제약을 적용한 포워드(forward) 기반 트랜지션 시스템과, 트랜지션 시스템의 단점인 에러 전파(error propagation)를 완화시키기 위하여 arc-eager 알고리즘의 lazy-reduce 방식을 적용한 백워드(backward) 기반 트랜지션 시스템이다. 실험은 세종 구구조 말뭉치를 의존구조로 변환하여 실험하였고, 실험 결과 백워드 기반 트랜지션 시스템이 포워드 방식보다 우수한 성능을 보였다. 기존 연구와의 비교를 위하여 기존 연구를 조사하였지만 세부 실험 환경이 서로 달라서 직접적인 비교는 어려웠다. 제안하는 시스템의 최고 성능은 UAS 92.85%, LAS 90.82% 이다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.108-111
/
2020
한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔으며 현재 가장 높은 성능을 보이고 있는 그래프 기반 파서인 Biaffine 어텐션 모델은 입력 시퀀스를 다층의 LSTM을 통해 인코딩 한 후 각각 별도의 MLP를 적용하여 의존소와 지배소에 대한 표상을 얻고 이를 Biaffine 어텐션을 통해 모든 의존소에 대한 지배소의 점수를 얻는 모델이다. 위의 Biaffine 어텐션 모델은 별도의 High-Order 정보를 활용하지 않는 first-order 파싱 모델이며 학습과정에서 어떠한 트리 관련 손실을 얻지 않는다. 본 연구에서는 같은 부모를 공유하는 형제 노드에 대한 점수를 모델링하고 정답 트리에 대한 조건부 확률을 모델링 하는 Second-Order TreeCRF 모델을 한국어 의존 파싱에 적용하여 실험 결과를 보인다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.464-468
/
1996
본 논문에서는 한국어 의존관계 파서의 정확성 및 효율성을 높이기 위해 구구조 내의 지역적 수식 특성을 반영할 수 있는 지역 의존관계의 사용을 제안한다. 의존문법은 자유어순 언어를 잘 설명할 수 있는 장점이 있지만, 전체 문장구조에 관한 의존제약이 너무 미약하기 때문에 단순히 어절간 구문 의존 제약만으로는 원하지 않는 분석 결과가 너무 많이 생성된다. 그러나 자유어순 언어라 하더라도 지역적인 구구조에는 일정한 어순 제약이 존재한다. 명사구, 용언구 등과 같은 구구조를 분석해 보면 수식어의 지배소는 반드시 그 구 안에 있다. 이러한 구조 정보에 기반을 둔 지역 의존관계 규칙을 이용하면 하나의 의존소에 대해서 지배소로 사용될 수 있는 어절의 범위를 제한하여, 원하지 않는 분석 결과를 줄일 수 있다. 한국어는 기본 문장 구조가 그대로 사용되기보다는 하나 이상의 수의 요소들이 첨가되어 보다 긴 문장 구조로 사용되는 경우가 많기 때문에, 본 논문에서 제안한 방법은 시스템 전체의 성능 및 효율을 크게 향상시킬 수 있다. 실험에서는 파싱의 첫 번째 단계에서 지역 의존관계 규칙을 사용하였을 경우 사용하지 않았을 때에 비해서 의존관계의 수가 평균 69% 정도로 줄어들었다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.452-463
/
1996
의존 문법을 사용한 의존 파싱에서 기본적인 단어(품사정보)들 사이의 의존 관계 검사에 의한 파싱 방법은 불필요한 의존 관계의 생성을 가져온다. 이러한 과생성을 해결하기 위하여 파싱 단계에서 보다 정교한 의존 파싱을 통해서 불필요한 의존 관계의 생성을 최소한으로 줄이는 방법에 대한 연구가 필요하다. 본 논문은 의존 파싱에서 최소한의 의존 관계를 생성하기 위하여 후보 의존소가 지배가능경로 상에서 술어 지배소와의 의존 관계 검사 시에 술어의 하위범주화 정보를 이용하는 효율적인 의존 파싱 방법을 제안한다. 이것은 의존 파싱의 다음 처리 단계인 의존 제약의 적용에 훨씬 부담을 덜어 줄 수 있다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.685-688
/
2018
의존 구문 분석은 자연어 문장에 포함된 단어들 간의 의존 관계를 분석하는 과제로 다양한 자연어 이해 과제에 요구되는 핵심 기술 중 하나이다. 본 연구에서는 단어와 문자 자질을 적용한 기존 Stack-Pointer Network의 인코더의 입력 단어 표상을 확장하여, 한국어를 비롯한 형태적으로 복잡한 언어(morphologically rich language)에 적합하도록 음절-태그 단위, 형태소 단위, 형태소 품사 정보 자질을 보강한 의존 구문 분석 모델을 제안한다. 실험 결과 제안하는 모델은 의존 구조로 변환된 세종 구문 분석 말뭉치에서 UAS 90.58%, LAS 88.35%의 성능을, 2018 국어 정보 처리 시스템 경진 대회 평가 데이터에서 UAS 84.69%, LAS 82.02%의 성능을 보였다. 더불어 제안하는 모델은 포함된 문장의 전체 길이가 긴 의존 관계, 의존소와 지배소의 거리가 먼 의존 관계, 의존소를 구성하는 형태소의 개수가 많은 의존 관계에서 기존 Stack-Pointer Network보다 향상된 성능을 보였다.
본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.14-19
/
2016
본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.