• Title/Summary/Keyword: 의존구문분석

Search Result 148, Processing Time 0.018 seconds

A Token Based Transfer Driven Koran -Japanese Machine Translation for Translating the Spoken Sentences (대화체 문장 번역을 위한 토큰기반 변환중심 한일 기계번역)

  • 양승원
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.4
    • /
    • pp.40-46
    • /
    • 1999
  • This paper introduce a Koran-Japanese machine translation system which is a module in the spoken language interpreting system It is implemented based on the TDMT(Transfre Driven Machine Translation). We define a new unit of translation so called TOKEN. The TOKEN-based translation method resolves nonstructural feature in Korean sentences and increases the quaity of translating results. In our system, we get rid of useless effort for traditional parsing by performing semi-parsing. The semi-parser makes the dependency tree which has minimum information needed generating module. We constructed the generation dictionaries by using the corpus obtained from ETRI spoken language database. Our system was tested with 600 utterances which is collected from travel planning domain The success-ratio of our system is 87% on restricted testing environment and 71% on unrestricted testing environment.

  • PDF

Emotion Recognition from Natural Language Text Using Predicate Logic Form (Predicate Logic Form을 이용한 자연어 텍스트로부터의 감정인식)

  • Seol, Yong-Soo;Kim, Dong-Joo;Kim, Han-Woo;Park, Jung-Ki
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.411-412
    • /
    • 2010
  • 전통적으로 자연어 텍스트로부터의 감정인식 연구는 감정 키워드에 기반한다. 그러나 감정 키워드만을 이용하면 자연어 문장이 원래 갖고 있는 통사정보나 의미정보는 잃어버리게 된다. 이를 극복하기 위해 본 논문에서는 자연어 텍스트를 Predicate Logic 형태로 변환하여 감정 정보처리의 기반데이터로 사용한다. Predicate Logic형태로 변환하기 위해서 의존 문법 구문분석기를 사용하였다. 이렇게 생성된 Predicate 데이터 중 감정 정보를 갖고 있는 Predicate만을 찾아내는데 이를 위해 Emotional Predicate Dictionary를 구축하였고 이 사전에는 하나의 Predicate마다 미리 정의된 개념 클래스로 사상 시킬 수 있는 정보를 갖고 있다. 개념 클래스는 감정정보를 갖고 있는지, 어떤 감정인지, 어떤 상황에서 발생하는 감정인지에 대한 정보를 나타낸다. 자연어 텍스트가 Predicate으로 변환되고 다시 개념 클래스로 사상되고 나면 KBANN으로 구현된 Lazarus의 감정 생성 규칙에 적용시켜 최종적으로 인식된 감정을 판단한다. 실험을 통해 구현된 시스템이 인간이 인식한 감정과 약 70%이상 유사한 인식 결과를 나타냄을 보인다.

  • PDF

Coreference Resolution for Korean using Mention Pair with SVM (SVM 기반의 멘션 페어 모델을 이용한 한국어 상호참조해결)

  • Choi, Kyoung-Ho;Park, Cheon-Eum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.4
    • /
    • pp.333-337
    • /
    • 2015
  • In this paper, we suggest a Coreference Resolution system for Korean using Mention Pair with SVM. The system introduced in this paper, also be able to extract Mention from document which is including automatically tagged name entity information, dependency trees and POS tags. We also built a corpus, including 214 documents with Coreference tags, referencing online news and Wikipedia for training the system and testing the system's performance. The corpus had 14 documents from online news, along with 200 question-and-answer documents from Wikipedia. When we tested the system by corpus, the performance of the system was extracted by MUC-F1 55.68%, B-cube-F1 57.19%, and CEAFE-F1 61.75%.

Korean Coreference Resolution at the Morpheme Level (형태소 수준의 한국어 상호참조해결 )

  • Kyeongbin Jo;Yohan Choi;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.329-333
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 End-to-End 모델이 주로 연구가 되었다. 그러나 End-to-End 방식으로 모델을 수행하기 위해서는 모든 스팬을 잠재적인 멘션으로 간주해야 되기 때문에 많은 메모리가 필요하고 시간 복잡도가 상승하는 문제가 있다. 본 논문에서는 서브 토큰을 다시 단어 단위로 매핑하여 상호참조해결을 수행하는 워드 레벨 상호참조해결 모델을 한국어에 적용하며, 한국어 상호참조해결의 특징을 반영하기 위해 워드 레벨 상호참조해결 모델의 토큰 표현에 개체명 자질과 의존 구문 분석 자질을 추가하였다. 실험 결과, ETRI 질의응답 도메인 평가 셋에서 F1 69.55%로, 기존 End-to-End 방식의 상호참조해결 모델 대비 0.54% 성능 향상을 보이면서 메모리 사용량은 2.4배 좋아졌고, 속도는 1.82배 빨라졌다.

  • PDF

Competition Relation Extraction based on Combining Machine Learning and Filtering (기계학습 및 필터링 방법을 결합한 경쟁관계 인식)

  • Lee, ChungHee;Seo, YoungHoon;Kim, HyunKi
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.367-378
    • /
    • 2015
  • This study was directed at the design of a hybrid algorithm for competition relation extraction. Previous works on relation extraction have relied on various lexical and deep parsing indicators and mostly utilize only the machine learning method. We present a new algorithm integrating machine learning with various filtering methods. Some simple but useful features for competition relation extraction are also introduced, and an optimum feature set is proposed. The goal of this paper was to increase the precision of competition relation extraction by combining supervised learning with various filtering methods. Filtering methods were employed for classifying compete relation occurrence, using distance restriction for the filtering of feature pairs, and classifying whether or not the candidate entity pair is spam. For evaluation, a test set consisting of 2,565 sentences was examined. The proposed method was compared with the rule-based method and general relation extraction method. As a result, the rule-based method achieved positive precision of 0.812 and accuracy of 0.568, while the general relation extraction method achieved 0.612 and 0.563, respectively. The proposed system obtained positive precision of 0.922 and accuracy of 0.713. These results demonstrate that the developed method is effective for competition relation extraction.

Development of Subcategorization Dictionary for the Disambiguation Korean Language Analysis (한국어 분석의 중의성 해소를 위한 하위범주화 사전 구축)

  • Lee, Su-Seon;Park, Hyun-Jae;Woo, Yo-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.257-264
    • /
    • 1999
  • 자연언어 처리에 있어 문장의 성분 구조를 파악하는 통사적 해석에서는 애매성 있는 결과가 많이 생성된다. 한국어의 경우 어순 등의 통사적 특성뿐 아니라 상황과 의미, 문맥이 문장의 분석에 더 중요한 역할을 하기 때문에 문맥 자유 문법에 의한 접근 방법만으로는 중의적 구조의 해결이 어렵다. 이는 또한 의미 분석시 애매성을 증가시키는 원인이 된다. 이러한 통사적, 의미적 중의성 해결을 위해 용언 중심의 하위범주화 사전을 구축하였다. 본 논문에서는 용언에 따라 제한될 수 있는 하위범주 패턴을 정의하고 패턴에 따라 하위범주 사전을 구축하였다. 하위범주화 사전에는 명사의 시소러스와 정합하여 보어를 선택 제한(Selectional Restriction)할 수 있도록 용언과 명사와의 의미적 연어 관계에 따라 의미마커를 부여했다. 말뭉치를 통해 수집된 용언 12,000여개를 대상으로 25,000여개의 하위범주 패턴을 구축하였고 이렇게 구축한 하위범주화 사전이 120,000여 명사에 대한 의미를 갖고 있는 계층 시소러스 의미 사전과 연동하도록 하였다. 또한 논문에서 구현된 하위범주화 사전이 구문과 어휘의 중의성을 어느 정도 해소하는지 확인하기 위해 반자동적으로 의미 태깅(Sense Tagging)된 2만여 문장의 말뭉치를 통해 검증 작업을 수행하고, 의존관계와 어휘의 의미를 포함하고 있는 말뭉치에 하위범주 패턴이 어느정도 정합되는지를 분석하여, 하위범주 패턴과 말뭉치의 의존관계만 일치하는 경우와 어휘의 의미까지 일치하는 경우에 대해 평가한다. 이 과정에서 하위범주 패턴에 대한 빈도 정보나, 연어 정보를 수집하여 데이터베이스에 포함시키고, 각 의미역과 용언의 통계적 공기 정보 등을 추출하는 방법도 제시하고자 한다.을 입증하였다.적응에 문제점을 가지기도 하였다. 본 연구에서는 그 동안 계속되어 온 한글과 한잔의 사용에 관한 논쟁을 언어심리학적인 연구 방법을 통해 조사하였다. 즉, 글을 읽는 속도, 글의 의미를 얼마나 정확하게 이해했는지, 어느 것이 더 기억에 오래 남는지를 측정하여 어느 쪽의 입장이 옮은 지를 판단하는 것이다. 실험 결과는 문장을 읽는 시간에서는 한글 전용문인 경우에 월등히 빨랐다. 그러나. 내용에 대한 기억 검사에서는 국한 혼용 조건에서 더 우수하였다. 반면에, 이해력 검사에서는 천장 효과(Ceiling effect)로 두 조건간에 차이가 없었다. 따라서, 본 실험 결과에 따르면, 글의 읽기 속도가 중요한 문서에서는 한글 전용이 좋은 반면에 글의 내용 기억이 강조되는 경우에는 한자를 혼용하는 것이 더 효율적이다.이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract

  • PDF

On "Dimension" Nouns In Korean (한국어 "크기" 명사 부류에 대하여)

  • Song, Kuen-Young;Hong, Chai-Song
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.260-266
    • /
    • 2001
  • 본 논문은 불어 명사의 의미 통사적 분류와 관련된 '대상부류(classes d'objets)' 이론을 바탕으로 한국어의 "크기" 명사 부류에 대한 의미적, 형식적 기준을 설정함으로써 자연언어 처리에의 활용 방안을 모색하고자 한다. 한국어의 일부 명사들은 어떤 대상 혹은 현상의 다양한 속성이 특정 차원에서 갖는 규모의 의미를 표현한다 예를 들어, '길이', '깊이', '넓이', '높이', '키', '무게', '온도', '기온' 등이 이에 해당하는데, 이들은 측정의 개념과도 밀접한 연관을 가지며, 통사적으로도 일정한 속성을 공유한다. 즉 '측정하다', '재다' 등 측정의 개념을 나타내는 동사 및 수량 표현과 더불어 일정한 통사 형식으로 실현된다는 점이다. 본 논문에서는 이러한 조건을 만족시키는 한국어 명사들을 "크기" 명사라 명명하며, "크기" 명사와 특징적으로 결합하는 '측정하다', '재다' 등의 동사를 "크기" 명사 부류에 대한 적정술어라 부른다. 또한 "크기" 명사는 결합 가능한 단위명사의 종류 및 호응 가능한 정도 형용사의 종류 등에 따라 세부 하위유형으로 분류할 수도 있다. 따라서 주로 술어와의 통사적 결합관계를 기준으로 "크기" 명사 부류를 외형적으로 한정하고, 이 부류에 속하는 개개 명사들의 통사적 세부 속성을 전자사전의 체계로 구축한다면 한국어 "크기" 명사에 대한 전반적이고 총체적인 의미적 통사적 분류와 기술이 가능해질 것이다. 한편 "크기" 명사에 대한 연구는 반드시 이들 명사를 특징지어주는 단위명사 부류의 연구와 병행되어야 한다. 본 연구는 한국어 "크기" 명사를 한정하고 분류하는 보다 엄밀하고 형식적인 기준과 그 의미 통사 정보를 체계적으로 제시해 줄 것이다. 이러한 정보들은 한국어 자동처리에 활용되어 "크기" 명사를 포함하는 구문의 자동분석 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(含量)은 $4.92{\times}10^{-2 }\;mg/m{\ell}$이었으며 yeast extract 농도(濃度)가 증가(增加)함에 따라 증가(增加)하다가 농도(濃度) 0.2%에서 최대함량(最大含量)을 나타내고 그후는 감소(減少)하였다.

  • PDF

Improving a Korean Spell/Grammar Checker for the Web-Based Language Learning System (웹기반 언어 학습시스템을 위한 한국어 철자/문법 검사기의 성능 향상)

  • 남현숙;김광영;권혁철
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.3
    • /
    • pp.1-18
    • /
    • 2001
  • The goal of this paper is the pedagogical application of a Korean Spell/Grammar Checker to the web-based language learning system for Korean writing. To maximize the efficient instruction of our learning system \\`Urimal Baeumteo\\` we have to improve our Korean Spell/Grammar Checker. Today the NLP system\\`s performance defends on its semantic processing capability. In our Korean Spell/Grammar Checker. the tasks accomplished in the semantic level are: the detection and correction of misused derived and compound nouns in a Korean spell-checking device and the detection and correction of syntactic and semantic errors in a Korean grammars-checking device. We describe a common approach to the partial parsing using collocation rules based on the dependency grammar. To provide more detailed semantic rules. we classified nouns according to their concepts. and subcategorized verbs referring to their syntactic and semantic features. Improving a Korean Spell/Gl-Grammar Checker makes our learning system active and intelligent in a web-based environment. We acknowledge the flaws in our system: the classification of nouns based on their meanings and concepts is a time consuming task. the analytic unit of this study is principally limited to the phrases in a sentence therefore the accurate parsing of embedded sentences remains a difficult problem to solve. Concerning the web-based language learning system. it is critically important to consider its interface design and structure of its contents.

  • PDF