• Title/Summary/Keyword: 의사 샘플 신경망

Search Result 6, Processing Time 0.026 seconds

Training Sample and Feature Selection Methods for Pseudo Sample Neural Networks (의사 샘플 신경망에서 학습 샘플 및 특징 선택 기법)

  • Heo, Gyeongyong;Park, Choong-Shik;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.19-26
    • /
    • 2013
  • Pseudo sample neural network (PSNN) is a variant of traditional neural network using pseudo samples to mitigate the local-optima-convergence problem when the size of training samples is small. PSNN can take advantage of the smoothed solution space through the use of pseudo samples. PSNN has a focus on the quantity problem in training, whereas, methods stressing the quality of training samples is presented in this paper to improve further the performance of PSNN. It is evident that typical samples and highly correlated features help in training. In this paper, therefore, kernel density estimation is used to select typical samples and correlation factor is introduced to select features, which can improve the performance of PSNN. Debris flow data set is used to demonstrate the usefulness of the proposed methods.

Parameter Estimation for Debris Flow Deposition Model Using Artificial Neural Networks (인공 신경망을 이용한 토석류 퇴적 모델 파라미터 추정)

  • Heo, Gyeongyong;Park, Choong-Shik;Lee, Chang-Woo;Youn, Ho-Joong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.33-34
    • /
    • 2012
  • 토석류 퇴적 모델은 토석류에 의한 피해지 예측을 위해 그 효용성이 입증된 모델이지만 이를 이용하기 위해서는 몇 가지 파라미터를 필요로 한다. 파라미터를 자동으로 추정하기 위한 방법은 여러 가지가 있지만 토석류에 의한 피해지 예측을 위한 데이터는 충분히 양을 확보하기가 어려우므로 기존의 학습 기법을 적용하는데 어려움이 있다. 본 논문에서는 인공 신경망을 학습시키는 과정에서 기존 샘플로부터 의사 샘플을 생성하고 이를 학습에 사용함으로써 보다 안정적인 학습이 가능한 의사 샘플 신경망을 제안하였다. 제안한 의사 샘플 신경망은 해공간을 평탄화시킴으로써 잘못된 국부 최적해에 빠질 확률을 줄여주고 따라서 보다 안정적인 파라미터 추정이 가능하다는 사실을 실험을 통해 확인할 수 있다.

  • PDF

A Feature Selection Method in Pseudo Sample Neural Networks (의사 샘플 신경망에서 특징 선택 기법)

  • Heo, Gyeongyong;Woo, Young Woon;Kim, Ji-Hong;Lee, Imgeun;Kim, Nam-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.197-199
    • /
    • 2013
  • 신경망의 학습은 학습 샘플의 품질뿐만이 아니라 입력으로 사용되는 특징에도 영향을 받으므로 신경망의 출력을 결정하는데 있어 연관성이 높은 특징을 입력으로 사용함으로써 학습된 신경망의 전체적인 성능을 높일 수 있다. 이 논문에서는 신경망의 입력으로 사용되는 특징과 출력의 연관성 파악하고 연관성이 낮은 특징을 학습 과정에서 배제함으로써 신경망의 전체적인 성능을 높일 수 있는 방법을 제시하였다. 토석류 데이터를 위한 의사 샘플 신경망에 제안한 방법을 적용한 경우 연관성이 낮은 특징 하나를 제외함으로써 약 6%의 오류 감소 효과를 얻을 수 있었다.

  • PDF

Parameter Estimation in Debris Flow Deposition Model Using Pseudo Sample Neural Network (의사 샘플 신경망을 이용한 토석류 퇴적 모델의 파라미터 추정)

  • Heo, Gyeongyong;Lee, Chang-Woo;Park, Choong-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.11-18
    • /
    • 2012
  • Debris flow deposition model is a model to predict affected areas by debris flow and random walk model (RWM) was used to build the model. Although the model was proved to be effective in the prediction of affected areas, the model has several free parameters decided experimentally. There are several well-known methods to estimate parameters, however, they cannot be applied directly to the debris flow problem due to the small size of training data. In this paper, a modified neural network, called pseudo sample neural network (PSNN), was proposed to overcome the sample size problem. In the training phase, PSNN uses pseudo samples, which are generated using the existing samples. The pseudo samples smooth the solution space and reduce the probability of falling into a local optimum. As a result, PSNN can estimate parameter more robustly than traditional neural networks do. All of these can be proved through the experiments using artificial and real data sets.

An ECG Document Imaging System based on Neural Network and Graphic Techniques (신경망과 그래픽 기법을 이용한 심전도 결과지 이미징 시스템)

  • Kim Jin-Sang;Choi Sang-Yeol;Bae In-Ho;Kim Yun-Nyeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.269-272
    • /
    • 2006
  • 병원의 각종 측정 장비에서 출력되는 결과지나 의사들이 작성한 기록지를 스캔하여 이미지형태로 저장하는 이미징 시스템 개발이 크게 요구되고 있다. 본 논문에서는 신경망과 그래픽 기법을 사용하여 대학병원 심전도실에서 사용되는 여섯 종류의 심전도 출력지를 이미지 형태로 저장하고 검색하는 이미징 시스템의 설계와 구현에 대해 논하였다. 구현된 시스템은 여섯 종류의 심전도 출력지를 분류하고, 분류된 각 출력지에 인쇄된 중요한 측정 데이터를 인식하여 데이터베이스에 저장한다. 심전도 출력지의 분류는 각 샘플 서식들의 평균 히스토그램을 구한 다음 새로운 출력지가 들어올 때 평균 히스토그램과의 거리가 가장 가까운 출력지로 분류하는 nearest-neighbor 방법을 사용하였다. 출력지에 인쇄된 데이터의 인식을 위해 먼저 XML로 작성한 출력지별 추출 정보를 기반으로 스캔한 이미지의 영역 분할 작업을 수행한다. 분할된 영역들은 신경망을 이용해 문자 인식을 하고, 인식된 문자들이 데이터베이스의 해당 속성값으로 저장된다. 스캔한 출력지는 의사들이 주석을 붙이거나 조건 검색을 위해 이미지 형태로 저장된다.

  • PDF

Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve (기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템)

  • 이혁수
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.421-430
    • /
    • 2004
  • Clinically, it is almost impossible for a physician to distinguish subtle changes of frequency spectrum by using a stethoscope alone especially in the early stage of thrombus formation. Considering that reliability of mechanical valve is paramount because the failure might end up with patient death, early detection of valve thrombus using noninvasive technique is important. Thus the study was designed to provide a tool for early noninvasive detection of valve thrombus by observing shift of frequency spectrum of acoustic signals with computer aid diagnosis system. A thrombus model was constructed on commercialized mechanical valves using polyurethane or silicon. Polyurethane coating was made on the valve surface, and silicon coating on the sewing ring of the valve. To simulate pannus formation, which is fibrous tissue overgrowth obstructing the valve orifice, the degree of silicone coating on the sewing ring varied from 20%, 40%, 60% of orifice obstruction. In experiment system, acoustic signals from the valve were measured using microphone and amplifier. The microphone was attached to a coupler to remove environmental noise. Acoustic signals were sampled by an AID converter, frequency spectrum was obtained by the algorithm of spectral analysis. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. A return map was applied to evaluate continuous monitoring of valve motion cycle. The in-vivo data also obtained from animals with mechanical valves in circulatory devices as well as patients with mechanical valve replacement for 1 year or longer before. Each spectrum wave showed a primary and secondary peak. The secondary peak showed changes according to the thrombus model. In the mock as well as the animal study, both spectral analysis and 3-layer neural network could differentiate the normal valves from thrombosed valves. In the human study, one of 10 patients showed shift of frequency spectrum, however the presence of valve thrombus was yet to be determined. Conclusively, acoustic signal measurement can be of suggestive as a noninvasive diagnostic tool in early detection of mechanical valve thrombosis.