• 제목/요약/키워드: 의사 샘플 신경망

검색결과 6건 처리시간 0.029초

의사 샘플 신경망에서 학습 샘플 및 특징 선택 기법 (Training Sample and Feature Selection Methods for Pseudo Sample Neural Networks)

  • 허경용;박충식;이창우
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.19-26
    • /
    • 2013
  • 의사 샘플 신경망은 학습 샘플의 수가 적은 경우 학습된 신경망이 국부 최적해에 빠져 성능이 저하되는 것을 보완하기 위해 기존 샘플들로부터 의사 샘플을 생성하고 이를 통해 해공간을 평탄화 시킴으로써 학습된 신경망의 성능을 향상시킬 수 있는 신경망의 변형이다. 이는 학습 샘플의 양에 관한 문제로 이 논문에서는 이에 더해 학습 샘플의 질을 향상시킴으로써 학습된 신경망의 성능을 더욱 높일 수 있는 방법을 제시하였다. 잡음이 적게 포함된 전형적인 학습 샘플들만이 주어지고 입력 특징 중 출력과 연관성이 높은 특징만을 사용함으로써 학습된 신경망의 성능을 높일 수 있음은 자명하다. 따라서 이 논문에서는 커널밀도 추정을 통해 비전형적인 학습샘플을 제거하고 입력값이 출력값에 미치는 영향을 나타내는 연관성 척도를 사용하여 연관성이 적은 특징을 제거함으로써 의사 샘플 신경망의 성능을 향상시킬 수 있음을 보였다. 제시한 방법의 유효성은 토석류 데이터를 이용한 실험을 통해 확인할 수 있다.

인공 신경망을 이용한 토석류 퇴적 모델 파라미터 추정 (Parameter Estimation for Debris Flow Deposition Model Using Artificial Neural Networks)

  • 허경용;박충식;이창우;윤호중
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.33-34
    • /
    • 2012
  • 토석류 퇴적 모델은 토석류에 의한 피해지 예측을 위해 그 효용성이 입증된 모델이지만 이를 이용하기 위해서는 몇 가지 파라미터를 필요로 한다. 파라미터를 자동으로 추정하기 위한 방법은 여러 가지가 있지만 토석류에 의한 피해지 예측을 위한 데이터는 충분히 양을 확보하기가 어려우므로 기존의 학습 기법을 적용하는데 어려움이 있다. 본 논문에서는 인공 신경망을 학습시키는 과정에서 기존 샘플로부터 의사 샘플을 생성하고 이를 학습에 사용함으로써 보다 안정적인 학습이 가능한 의사 샘플 신경망을 제안하였다. 제안한 의사 샘플 신경망은 해공간을 평탄화시킴으로써 잘못된 국부 최적해에 빠질 확률을 줄여주고 따라서 보다 안정적인 파라미터 추정이 가능하다는 사실을 실험을 통해 확인할 수 있다.

  • PDF

의사 샘플 신경망에서 특징 선택 기법 (A Feature Selection Method in Pseudo Sample Neural Networks)

  • 허경용;우영운;김지홍;이임건;김남규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제47차 동계학술대회논문집 21권1호
    • /
    • pp.197-199
    • /
    • 2013
  • 신경망의 학습은 학습 샘플의 품질뿐만이 아니라 입력으로 사용되는 특징에도 영향을 받으므로 신경망의 출력을 결정하는데 있어 연관성이 높은 특징을 입력으로 사용함으로써 학습된 신경망의 전체적인 성능을 높일 수 있다. 이 논문에서는 신경망의 입력으로 사용되는 특징과 출력의 연관성 파악하고 연관성이 낮은 특징을 학습 과정에서 배제함으로써 신경망의 전체적인 성능을 높일 수 있는 방법을 제시하였다. 토석류 데이터를 위한 의사 샘플 신경망에 제안한 방법을 적용한 경우 연관성이 낮은 특징 하나를 제외함으로써 약 6%의 오류 감소 효과를 얻을 수 있었다.

  • PDF

의사 샘플 신경망을 이용한 토석류 퇴적 모델의 파라미터 추정 (Parameter Estimation in Debris Flow Deposition Model Using Pseudo Sample Neural Network)

  • 허경용;이창우;박충식
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권11호
    • /
    • pp.11-18
    • /
    • 2012
  • 토석류 퇴적 모델은 토석류에 의한 피해지 예측을 위해 random walk model(RWM)을 사용하여 구성한 모델로 피해지 예측에서 그 효용성이 입증되었지만 몇 개의 자유 파라미터가 실험적으로 결정되어야 하는 문제점이 있다. 파라미터를 자동으로 추정하기 위한 방법은 여러 가지가 있지만 토석류 데이터는 학습 데이터의 크기가 작아 기존 학습 기법을 적용하는데 어려움이 있다. 이 논문에서는 학습 데이터 크기 문제를 완화할 수 있는 신경망의 변형인 의사 샘플 신경망을 제안하였다. 의사 샘플 신경망은기존 샘플로부터 의사 샘플을생성하고 이를 학습에 사용한다. 의사 샘플은 해공간을 평탄화시키고 국부 최적해에 빠질 확률을 줄여줌으로써 기존 신경망에 비해 안정적인 파라미터 추정이 가능해진다. 이러한 사실은 실험 결과 통해 확인할 수 있다.

신경망과 그래픽 기법을 이용한 심전도 결과지 이미징 시스템 (An ECG Document Imaging System based on Neural Network and Graphic Techniques)

  • 김진상;최상열;배인호;김윤년
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.269-272
    • /
    • 2006
  • 병원의 각종 측정 장비에서 출력되는 결과지나 의사들이 작성한 기록지를 스캔하여 이미지형태로 저장하는 이미징 시스템 개발이 크게 요구되고 있다. 본 논문에서는 신경망과 그래픽 기법을 사용하여 대학병원 심전도실에서 사용되는 여섯 종류의 심전도 출력지를 이미지 형태로 저장하고 검색하는 이미징 시스템의 설계와 구현에 대해 논하였다. 구현된 시스템은 여섯 종류의 심전도 출력지를 분류하고, 분류된 각 출력지에 인쇄된 중요한 측정 데이터를 인식하여 데이터베이스에 저장한다. 심전도 출력지의 분류는 각 샘플 서식들의 평균 히스토그램을 구한 다음 새로운 출력지가 들어올 때 평균 히스토그램과의 거리가 가장 가까운 출력지로 분류하는 nearest-neighbor 방법을 사용하였다. 출력지에 인쇄된 데이터의 인식을 위해 먼저 XML로 작성한 출력지별 추출 정보를 기반으로 스캔한 이미지의 영역 분할 작업을 수행한다. 분할된 영역들은 신경망을 이용해 문자 인식을 하고, 인식된 문자들이 데이터베이스의 해당 속성값으로 저장된다. 스캔한 출력지는 의사들이 주석을 붙이거나 조건 검색을 위해 이미지 형태로 저장된다.

  • PDF

기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템 (Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve)

  • 이혁수
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권5호
    • /
    • pp.421-430
    • /
    • 2004
  • 임상적으로 의사가 청진기를 이용해 초기 혈전이 생긴 기계식 판막 음향신호의 변화를 구분하기는 쉽지 않다. 기계식 판막의 이상은 환자의 죽음을 의미하기 때문에 기계식 판막의 신뢰성과 초기 혈전 현상을 비관혈적으로 조기 진단하는 방법은 매우 중요하다. 이 논문은 컴퓨터 보조진단 시스템과 음향신호의 주파수 스펙트럼의 이동을 관찰하여 기계식 판막의 혈전 현상을 비관혈적으로 평가하는 것을 목적으로 한다. 혈전 모델은 상용화된 기계식 판막에 폴리우레세인과 실리콘을 이용하여 제작하였다. 판막의 표면에는 폴리우레세인을 코팅하고, 봉합링에는 실리콘을 코팅하였다. 봉합링의 주위에서 혈전이 발생하고, 20%, 40%, 60%로 자라나는 현상은 실리콘을 이용하여 제작하였다. 실험 시스템에서 판막의 음향 신호는 마이크로폰과 증폭기를 사용하여 측정하였고, 마이크로폰에는 주위잡음을 제거하기 위해 커플러를 장착하였다. 측정된 음향신호는 A/D 컨버터를 이용하여 샘플링하고, 스펙트럼을 분석하였다. 정상적인 판막과 혈전이 형성된 판막의 주파수 구분을 위해 인공신경망을 구성하였고, 연속적으로 판막의 운동 주기성을 확인하기 위하여 return map을 사용하였다. 생체 내 실험에서는 기계식 판막을 사용하는 순환장치를 장착한 동물과 기계식 판막을 치환 받은 지 1년 이내와 1년이 넘은 환자에게서 데이터를 채집하였다. 실험에서 얻은 데이터 스펙트럼은 두 가지 형태의 첨두치를 보였고, 이중에서 두 번째 첨두치는 혈전의 모델에 따라 변화를 보였다. 생체 내, 외 실험에서 얻은 데이터를 인공신경망에 적용한 결과 정상 판막과 혈전이 생성된 판막을 구분하였고, 환자를 대상으로 한 실험에서는 10명 중 1명이 두 번째 첨두치가 이동하는 결과를 보였지만 다른 방법으로 확인하지는 못했다. 본 논문의 결과는 기계식 판막의 혈전현상을 비침습적으로 조기 진단하고, 상태를 지속적으로 감시할 수 있는 기술적 토대를 제공할 것이다.