• Title/Summary/Keyword: 의사압축성인자

Search Result 3, Processing Time 0.022 seconds

Numerical Study of Three-dimensional Flow Through a Turbine Flow Meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J.B.;Ko S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.44-50
    • /
    • 2003
  • Flow through a turbine flow meter is simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames, and the centrifugal force and the Coriolis force are added to the equation of motion. The standard $k-{\epsilon}$model is employed to evaluate turbulent viscosity. Computational results yield quantitative as well as qualitative information on the design of turbine flow meters by showing the distributions of pressure and velocity around the turbine blades.

Numerical study of three-dimensional flow through turbine flow meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J. B.;Park, K. A.;Ko, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.247-252
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel Line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. The standard k-$\epsilon$ model is employed to evaluate turbulent viscosity.

  • PDF

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF