• Title/Summary/Keyword: 의사결정 알고리즘

Search Result 583, Processing Time 0.034 seconds

Estimation of forest Site Productivity by Regional Environment and Forest Soil Factors (권역별 입지$\cdot$토양 환경 요인에 의한 임지생산력 추정)

  • Won Hyong-kyu;Jeong Jin-Hyun;Koo Kyo-Sang;Song Myung Hee;Shin Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.132-140
    • /
    • 2005
  • This study was conducted to develop regional site index equations for main tree species in Gangwon, Gyunggi-Chungcheong, Gyungsang, and Jeolla area of Korea, using environmental and soil factors obtained from a digital forest site map. Using the large data set obtained from the digital forest map, a total of 28 environmental and soil factors were regressed on site index by tree species for developing the best site index equations for each of the regions. The selected main tree species were Larix 1eptolepis, Pinus koraiensis, Pinus densiflora, Pinus thunbergii, and Quercus acutissima. Finally, four to five environmental and soil factors by species were chosen as independent variables in defining the best regional site index equations with the highest coefficients of determination $(R^2)$. For those site index equations, three evaluation statistics such as mean difference, standard deviation of difference and standard error of difference were applied to the data sets independently collected from fields within the region. According to the evaluation statistics, it was found that the regional site index equations by species developed in this study conformed well to the independent data set, having relatively low bias and variation. It was concluded that the regional site index equations by species had sufficient capability for the estimation of site productivity.

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

Rock Joint Trace Detection Using Image Processing Technique (영상 처리를 이용한 암석 절리 궤적의 추적)

  • 이효석;김재동;김동현
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.373-388
    • /
    • 2003
  • The investigation on the rock discontinuity geometry has been usually undergone by direct measurement on the rock exposures. But this sort of field work has disadvantages, which we, for example, restriction of surveying areas and consuming excessive times and labors. To cover these kinds of disadvantages, image processing could be regarded as an altemative way, with additional advantages such as automatic and objective tools when used under adequate computerized algorithm. This study was focused on the recognition of the rock discontinuities captured in the image of rock exposure by digital camera and the production of the discontinuity map automatically. The whole process was written using macro commands builtin image analyzer, ImagePro Plus. ver 4.1(Media Cybernetic). The procedure of image processing developed in this research could be divided with three steps, which are enhancement, recognition and extraction of discontinuity traces from the digital image. Enhancement contains combining and applying several filters to remove and relieve various types of noises from the image of rock surface. For the next step, recognition of discontinuity traces was executed. It used local topographic features characterized by the differences of gray scales between discontinuity and rock. Such segments of discontinuity traces extracted from the image were reformulated using an algorithm of computer decision-making criteria and linked to form complete discontinuity traces. To verify the image processing algorithms and their sequences developed in this research, discontinuity traces digitally photographed on the rock slope were analyzed. The result showed about 75~80% of discontinuities could be detected. It is thought to be necessary that the algorithms and computer codes developed in this research need to be advanced further especially in combining digital filters to produce images to be more acceptable for extraction of discontinuity traces and setting seed pixels automatically when linking trace segments to make a complete discontinuity trace.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

Monte Carlo Simulation based Optimal Aiming Point Computation Against Multiple Soft Targets on Ground (몬테칼로 시뮬레이션 기반의 다수 지상 연성표적에 대한 최적 조준점 산출)

  • Kim, Jong-Hwan;Ahn, Nam-Su
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • This paper presents a real-time autonomous computation of shot numbers and aiming points against multiple soft targets on grounds by applying an unsupervised learning, k-mean clustering and Monte carlo simulation. For this computation, a 100 × 200 square meters size of virtual battlefield is created where an augmented enemy infantry platoon unit attacks, defences, and is scatted, and a virtual weapon with a lethal range of 15m is modeled. In order to determine damage types of the enemy unit: no damage, light wound, heavy wound and death, Monte carlo simulation is performed to apply the Carlton damage function for the damage effect of the soft targets. In addition, in order to achieve the damage effectiveness of the enemy units in line with the commander's intention, the optimal shot numbers and aiming point locations are calculated in less than 0.4 seconds by applying the k-mean clustering and repetitive Monte carlo simulation. It is hoped that this study will help to develop a system that reduces the decision time for 'detection-decision-shoot' process in battalion-scaled combat units operating Dronebot combat system.

Analysis of Galvanic Skin Response Signal for High-Arousal Negative Emotion Using Discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 고각성 부정 감성의 GSR 신호 분석)

  • Lim, Hyun-Jun;Yoo, Sun-Kook;Jang, Won Seuk
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.13-22
    • /
    • 2017
  • Emotion has a direct influence such as decision-making, perception, etc. and plays an important role in human life. For the convenient and accurate recognition of high-arousal negative emotion, the purpose of this paper is to design an algorithm for analysis using the bio-signal. In this study, after two emotional induction using the 'normal' / 'fear' emotion types of videos, we measured the Galvanic Skin Response (GSR) signal which is the simple of bio-signals. Then, by decomposing Tonic component and Phasic component in the measured GSR and decomposing Skin Conductance Very Slow Response (SCVSR) and Skin Conductance Slow Response (SCSR) in the Phasic component associated with emotional stimulation, extracting the major features of the components for an accurate analysis, we used a discrete wavelet transform with excellent time-frequency localization characteristics, not the method used previously. The extracted features are maximum value of Phasic component, amplitude of Phasic component, zero crossing rate of SCVSR and zero crossing rate of SCSR for distinguishing high-arousal negative emotion. As results, the case of high-arousal negative emotion exhibited higher value than the case of low-arousal normal emotion in all 4 of the features, and the more significant difference between the two emotion was found statistically than the previous analysis method. Accordingly, the results of this study indicate that the GSR may be a useful indicator for a high-arousal negative emotion measurement and contribute to the development of the emotional real-time rating system using the GSR.

Design of Real-time Vital-Sign Encryption Module for Wearable Personal Healthcare Device (착용형 개인 건강관리 장치를 위한 실시간 생체신호 암호화 모듈의 설계)

  • Kim, Jungchae;Yoo, Sun Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.221-231
    • /
    • 2013
  • Exchanging personal health information(PHI) is an essential process of healthcare services using information and communication technology. But the process have the inherent risk of information disclosure, so the PHI should be protected to ensure the reliability of healthcare services. In this paper, we designed encryption module for wearable personal health devices(PHD). A main goal is to guarantee that the real-time encoded and transmitted PHI cannot be allowed to be read, revised and utilized without user's permission. To achieve this, encryption algorithms as DES and 3DES were implemented in modules operating in Telos Rev B(16bit RISC, 8Mhz). And the experiments were performed in order to evaluate the performance of encryption and decryption using vital-sign measured by PHD. As experimental results, an block encryption was measured the followings: DES required 1.802 ms and 3DES required 6.683 ms. Also, we verified the interoperability among heterogeneous devices by testing that the encrypted data in Telos could be decoded in other machines without errors. In conclusion, the encryption module is the method that a PHD user is given the powerful right to decide for authority of accessing his PHI, so it is expected to contribute the trusted healthcare service distribution.

Development of Prediction Model of Financial Distress and Improvement of Prediction Performance Using Data Mining Techniques (데이터마이닝 기법을 이용한 기업부실화 예측 모델 개발과 예측 성능 향상에 관한 연구)

  • Kim, Raynghyung;Yoo, Donghee;Kim, Gunwoo
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.173-198
    • /
    • 2016
  • Financial distress can damage stakeholders and even lead to significant social costs. Thus, financial distress prediction is an important issue in macroeconomics. However, most existing studies on building a financial distress prediction model have only considered idiosyncratic risk factors without considering systematic risk factors. In this study, we propose a prediction model that considers both the idiosyncratic risk based on a financial ratio and the systematic risk based on a business cycle. Ultimately, we build several IT artifacts associated with financial ratio and add them to the idiosyncratic risk factors as well as address the imbalanced data problem by using an oversampling technique and synthetic minority oversampling technique (SMOTE) to ensure good performance. When considering systematic risk, our study ensures that each data set consists of both financially distressed companies and financially sound companies in each business cycle phase. We conducted several experiments that change the initial imbalanced sample ratio between the two company groups into a 1:1 sample ratio using SMOTE and compared the prediction results from the individual data set. We also predicted data sets from the subsequent business cycle phase as a test set through a built prediction model that used business contraction phase data sets, and then we compared previous prediction performance and subsequent prediction performance. Thus, our findings can provide insights into making rational decisions for stakeholders that are experiencing an economic crisis.

A Study on Analyzing Children's Crossing Behaviors on Non-signalized Crosswalk (비신호 횡단보도에서의 어린이 횡단행태 분석 연구)

  • Lee, Deok Whan;Lee, Yun Suk;Kim, Won Ho;Lee, Back Jin
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.19-32
    • /
    • 2013
  • The study aims to find the characteristics of children's crossing behavior on crosswalk in school zones. It considers accident occurrence and physical form of school zones. Seven elementary school zones were investigated. Using data collected by field observation and video recording, statistical analysis, CHAID algorithm analysis, and pattern analysis were performed. As a result, it was found that children's waiting, attention and distraction were related to the accident occurrence. While 69.1% children showed waiting-before-crossing behavior in low-accident occurrence crosswalk, 83.6% children showed non waiting-before-crossing behavior in high-accident occurrence crosswalk. Moreover, the ratio of waiting, attention behavior was found to be higher when the width of the crosswalk was wide and the distance from the school's entrance to the crosswalk was long. These research findings showed that children's behavior-oriented approach was required to improve safety in school zone.

A study on the Realtime Update of the Digital-Map by the General Survey Map (일반측량성과도에 의한 수치지도의 수시갱신방법 연구)

  • Lee, Sang-Gil;Kwon, Jay-Hyoun;Jeon, Jae-Han
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.19-26
    • /
    • 2007
  • The renewal update of the digital map constructed through NGIS has been conducted for the enhancement of usage, maintenance so that the latest data is guaranteed. The total update has been done every five years for five regions of the country using aerial photographs and satellite images. By launching the third phase of NGIS, the updating plan was changed from total to total or partial update including the real time update scheme. Furthermore, the update period was improved from five to two years and four years for a large and a small city, respectively. Therefore, it is necessary to develope a matching technique which combines various geographic information (such as drawing map, surveying drawing and map) with exact position on the digital map. In this study, we developed a matching algorithm based on central point and suggested a method which uses general surveying drawing for revision/update of the digital map. The general survey is conducted when a civilian development on lands are approved. Thus, the outcome from the survey, which is the general survey drawing, contains the latest various contents such as road, building, water pipe and manhole. A consistent and efficient method using the general survey drawing for near real time update of the digital map by applying the developed matching algorithm is presented.

  • PDF