• 제목/요약/키워드: 의사결정나무모형

검색결과 228건 처리시간 0.025초

의사결정나무모형을 사용한 성인 생애주기별 취업 영향요인 분석 (Finding factors on employment by adult life cycle using decision tree model)

  • 곽민정;이성석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1537-1545
    • /
    • 2016
  • 세계적으로 유가하락과 더불어 경제가 침체되면서 우리나라도 저성장의 기조를 보이고 있고, 노동 시장에서는 취업난이 가중되고 있으므로 취업영향 요인을 파악하여 적절한 취업 정책을 수립하는 것이 절실한 현실이다. 따라서 본 연구에서는 제17차년도 노동패널자료를 사용하여 취업에 영향을 미치는 요인을 파악하고자 한다. 성인 생애주기는 청년기, 중장년기와 노년기로 구분하였으며 취업에 영향을 미치는 요인으로 인구통계학적 변수, 직업관련 변수 그리고 건강관련 변수를 고려하였다. 의사결정나무분석을 사용하여 분석한 결과 청년기에는 학력이 가장 중요한 요인이었으며, 중장년기에는 가장 중요한 요인이 성별이었고, 남성의 경우 건강상태, 여성의 경우, 직업훈련경험, 연령, 건강상태의 순으로 나타났다. 노년기에도 성별이 가장 중요한 요인이었고 그 다음으로 건강상태, 학력 등의 순으로 나타났다.

화장품구매 자료를 통한 고객 구매행태 분석 (A study on the behavior of cosmetic customers)

  • 조대현;김병수;석경하;이종언;김종성;김선화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권4호
    • /
    • pp.615-627
    • /
    • 2009
  • 본 연구의 목적은 효과적인 마케팅전략 수립에 도움이 되는 정보를 제공하는 데 있다. 이를 위하여 화장품구매 자료로부터 고객 구매형태와 재구매 간의 관계를 분석하여 고객충성도 예측모형을 개발하였다. 고객충성도는 재구매 가능성으로 측정하였다. 본 연구에서 사용된 자료는 국내의 한 화장품회사 고객들의 2000년부터 2008년까지 9년간의 구매자료 (432,528명, 2,440,107건)이다. 예측모형의 목표변수는 재구매 유무이고, 설명변수는 구매수량, 구매액, 휴면기간 등의 기본변수와 구매횟수와 거래 일자를 이용한 가공변수들이다. 충성도 예측모형은 데이터마이닝 기법인 로지스틱회귀, 의사결정나무 및 신경망모형을 사용하였다. 예측모형평가의 측도로는 하이드게 점수를 사용하였으며, 최대의 하이드게 점수를 가지는 분계점을 선택하였다. 각예측모형에서 선택된 변수는 유사하며, 모형비교 결과 세 모형의 효율과 평가측도의 차이는 크지 않았다. 정분류율이 다소 높고 해석과 활용이 쉬운 의사결정나무모형을 최종모형으로 선택했다.

  • PDF

국민건강보험 청구자료 기반의 결핵환자 분류 고도화 모형 개발 (Development of Advanced TB Case Classification Model Using NHI Claims Data)

  • 박일수;김유미;최연희;김성수;김은주;원시연;강성홍
    • 디지털융복합연구
    • /
    • 제11권9호
    • /
    • pp.289-299
    • /
    • 2013
  • 본 연구의 목적은 현재 질병관리본부에서 사용하고 있는 건강보험 청구자료 기반의 결핵환자 분류기준을 고도화하여 보다 효과적인 결핵환자감시체계의 토대를 제공하기 위해 수행되었다. 이를 위해 건강보험심사평가원의 2009년 1년간 결핵상병으로 청구된 81,199명 중 10%인 8,118명을 표본추출한 후 실제 결핵환자인지에 대해서 의무기록 조사를 실시하여 조사가 완료되고, 국민건강보험공단 건강보험청구 자료와 매칭이 완료된 7,132명을 최종 분석대상자로 하였다. 결핵환자분류를 위한 모형을 개발하여 평가한 결과 결핵과 관련된 임상전문가 의견과 통계적 분류 알고리즘이 종합적으로 고려된 의사결정나무모형이 가장 우수한 모형으로 평가되었다. 의사결정나무 모형에 따른 결핵분류모형의 주요 독립변수는 연령, 최초 청구시점의 결핵약제 종류수, 최초 청구시점의 이용 의료기관 유형, 최초 청구시점의 청구결핵검사 종류, 2008년 결핵약 투약일수, 최초 청구시점 결핵약제 투약일수, 최초 청구시점 결핵상병 종류로 나타났다. 이 모형의 향상도는 최고 11.8이였으며, 개발된 모형에서 분류된 1~5유형까지 적용하여 청구된 자료 중 결핵이 아님을 예측할 경우, 민감도는 90.6%, 양성예측도는 96.1%, 정분류율은 87.6%로 나타나, 현재 질병관리본부에서 사용하는 청구2회 이상, 약제 2제 이상 모형(민감도 82.6%, 양성예측도 95%, 정분류율 80%)보다 우수한 모형인 것으로 나타났다.

의사결정나무 분석을 사용한 고가의료장비의 다빈도 사용 특성 분석 (The diffusion and policy options of the diagnostic imaging technologies in Korea)

  • 최윤정;곽민정;윤민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.179-185
    • /
    • 2015
  • 최근 고가의료장비의 도입으로 진단기술이 빠르게 발전하고 있으나 이에 따른 건강보험 재정의 부담이 크게 늘어 이에 대한 적절한 관리와 효율적 운영에 대한 정책이 필요하다. 이에 따라 본 연구에서는 의사결정나무분석 모형을 사용하여 CT 의료장비의 검사빈도에 영향을 미치는 요인을 파악하여 효율적 운영에 대한 방안을 제시한다.

사례기반 추론에 의한 반도체 패키징 공장의 Cycle-time 예측 모형 개발

  • 김규진;서용무
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 추계학술대회
    • /
    • pp.611-616
    • /
    • 2007
  • 반도체 패키징 공장에서 싸이클타임(Cycle-time)을 정확히 예측하는 것은 납기일 준수를 통해 고객만족도를 향상시킬 수 있고, 보다 효율적인 스케쥴링을 가능하게 하여 공장 가동률을 높일 수 있게 한다. 그러나 반도체 패키징은 제품 종류가 다양하고 제품마다 특화된 기술을 사용할 뿐만 아니라 공정 순서나, WIP에 따라 싸이클타임이 크게 영향을 받아 그 정확한 예측이 매우 어렵기 때문에 현장 전문가의 판단에 의존하는 경우가 많았다. Fab공정의 경우 전문가를 도와 좀 더 정확한 예측에 도움을 주기 위해 그 동안 전통적 통계 기법 및 시뮬레이션에 기반한 의사결정 모형이 많이 연구되었는데, 최근에는 기계학습 및 인공지능 기법을 사용한 연구가 눈에 띄고 있으며 기존의 방법보다 우수한 성능을 보여 주는 것으로 나타났다. 하지만 아직 기계학습 및 인공지능을 이용한 충분한 연구가 진행되지 못하고 있는 실정이다. 따라서 본 연구에서는 사례기반 추론을 사용하여 패키징 공정의 싸이클타임을 예측하고자 하였으며 그 성능을 인공신경망 모형, 의사결정나무 모형, 그리고 해당 분야 전문가의 예측치와 비교하였다. 실험결과에 따르면 사례기반추론 모형이 가장 뛰어난 성능을 보이는 것으로 나타났다.

  • PDF

학업성취도에 대한 대입전형 요인들의 영향력 분석 (The influence analysis of admission variables on academic achievements)

  • 조장식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권4호
    • /
    • pp.729-736
    • /
    • 2010
  • 본 논문에서는 부산 소재 K 대학교 신입생들의 학업성취도에 대해 신입생의 특성변수를 포함한 전형관련 변수들에 대한 영향력 분석을 연구한다. 이를 위해 모수적인 방법인 다중회귀분석과 비모수적인 방법인 의사결정나무 분석을 통하여 학업성취도에 대한 전형관련 변수들에 대한 주효과와 상호 작용효과를 각각 분석하였다.

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

의사결정나무기법을 활용한 노인장기요양보험 표준급여모형 개발 (A Decision-support System for Care Plan in Long-term Care Insurance)

  • 한은정;이정석;김동건;권진희
    • 응용통계연구
    • /
    • 제27권5호
    • /
    • pp.667-679
    • /
    • 2014
  • 우리나라 노인장기요양보험에서는 수급자가 월 한도액 범위 내에서 필요한 서비스를 비용-효율적으로 이용할 수 있도록 지원하고자 표준장기요양이용계획서를 작성하여 제공하고 있다. 본 연구는 표준장기요양이용계획서의 객관성 확보와 업무 효율성 제고를 위하여 의사결정나무기법을 이용해 수급자의 건강 및 기능 상태에 맞는 최적의 급여계획을 도출하는 표준급여모형을 개발하였다. 타당도 높은 모형 개발을 위하여 국민건강보험공단의 전국 220개 장기요양운영센터로부터 장기요양인정조사와 표준장기요양이용계획서 작성 경험이 풍부한 직원(본 연구에서는 '훈련된 조사자'라고 함)을 추천받아 자료수집의 내용과 방법에 대해 교육을 실시하였고, 이들이 수급자의 건강 및 기능 상태를 평가하고 작성한 수급자 개인별 맞춤형 급여계획을 자료 분석에 활용하였다. 표준급여모형은 1단계로 시설 또는 재가 급여 권고 여부를 결정하는 모형을, 2단계로 재가급여를 권고했을 경우의 재가급여 세부 종류별 권고 여부를 결정하는 모형을 개발하였다. 본 연구에서 개발된 표준급여모형은 전산프로그램화 되어 국민건강보험공단 직원이 수급자에게 제공할 표준장기요양이용계획을 수립하는 과정에 실제로 활용되고 있어 표준장기요양이용계획서의 객관성 확보와 업무 효율화가 기대된다.

청년의 문제음주에 미치는 사회생태학적 결정요인에 관한 데이터 마이닝 분석 (Data Mining Analysis of Determinants of Alcohol Problems of Youth from an Ecological Perspective)

  • 이숙현;문상호
    • 사회복지연구
    • /
    • 제49권4호
    • /
    • pp.65-100
    • /
    • 2018
  • 본 연구는 사회생태학적인 관점에서 문제음주를 논의하였다. 이론적 논의와 더불어 실증적인 근거를 제시하고자, 2538명의 청년을 대상으로 데이터마이닝 기법을 적용한 탐색적 정책연구를 실시했다. 구체적으로, SAS-Enterprise Miner를 활용하여 의사결정나무, 신경망, 로지스틱회귀 모형을 분석하였다. 이때, 독립변인에 대한 선행적 가정의 설정 없이, 문제음주에 설명력을 가지는 영향요인을 찾고, 정책적 함의를 도출하였다. 의사결정나무모형 분석결과, 흡연여부가 문제음주를 가장 잘 설명하는 것으로 나타났으며, 흡연여부 대비 다른 변인의 중요도는 성별(0.5796), 배우자유무(0.3301), 가구원수(0.2805), 경제활동 참여여부(0.2596) 그리고 교육(0.2167) 순으로 크게 나타났다. 신경망의 최적화 과정은 50회 반복을 통해 추정되었으며, 횟수 3에서 평균제곱오차(ASE: Average Squared Error)가 분석용 데이터는 0.133, 평가용은 0.152 그리고 검증용은 0.170으로 나타났다. 마지막으로 로지스틱회귀분석에서는 성별, 연령, 흡연여부, 배우자유무, 가구원수, 구직여부 그리고 경제활동참여여부가 청년의 문제음주에 유의미한 영향을 미치는 것으로 나타났다. 분석결과를 토대로 본 연구는 청년에게 특화된 중독프로그램 마련 및 청년 구직스트레스 해소방안 등 다양한 정책적 함의를 제언하였다.

데이터마이닝 기법을 활용한 노인장기요양급여 권고모형 개발 (A Recommending System for Care Plan(Res-CP) in Long-Term Care Insurance System)

  • 한은정;이정석;김동건;강임옥
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1229-1237
    • /
    • 2009
  • 노인장기요양보험에서 가장 중요한 이슈는 급여대상자의 희망, 건강 및 기능상태에 따라 어떤 급여를 제공할 것인가 이다. 이를 해결하고자 노인장기요양보험의 보험자인 국민건강보험 공단은 급여대상자에게 '표준장기요양이용계획서'를 제공하고 있다. 본 연구에서는 표준장기요양이용계획 작성의 효율화 방안을 마련하고자 노인장기요양보험 3차 시범사업 표준이용계획 자료를 활용하여 노인장기요양급여 권고모형을 개발하였다. 모형개발에는 데이터마이닝의 의사결정나무모형, 로지스틱회귀모형, 앙상블 모형의 배깅과 부스팅 기법을 사용하였고, 이 중 실무자가 이해하기 쉬운 의사결정나무를 채택하여 권고모형을 설명 하였다. 본 연구는 노인장기요양보험 제도의 이용계획 수립의 객관성 및 과학성을 확보하고 이용계획 업무를 효율화하는 데에 기여할 것으로 기대된다.