• Title/Summary/Keyword: 의사거리 오차

Search Result 57, Processing Time 0.042 seconds

Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator (GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • In this paper, we developed the signal generator of GNSS navigation signals and analysis the performance of DCO(Digitally Clock Oscillator) compensation algorithm for cumulative distance error thorough simulation. In general, To generate a GNSS signal calculates the Doppler and Initial Pseudorange by using the location information of the receiver and the satellite. The GNSS signal generator generates a signal by determine the carrier and code output frequency using the Doppler information which is calculated as a function of time. The output frequency of the carrier and code would be used the DCO scheme. At this time, It extract the bit and code information on a for each sample by accumulating the DCO. an error of Pseudorange is generated by the cumulative error of the DCO. If Pseudorange error occurs, so that the influence to and operation of the receiver. Therefore, in this paper, we implemented the accumulated error compensation algorithm of the DCO to remove the accumulated error components DCO thereof, Pseudorange accumulated error is removed through the experiment, it was confirmed to be a high accuracy can be operated.

Development of Removal Techniques for PRC Outlier & Noise to Improve NDGPS Accuracy (국토해양부 NDGPS 정확도 향상을 위한 의사거리 보정치의 이상점 및 노이즈 제거기법 개발)

  • Kim, Koon-Tack;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.63-73
    • /
    • 2011
  • The Pseudorange Corrections (PRC), which are used in DGPS as calibration messages, can contain outliers, noise, and anomalies, and these abnormal events are unpredictable. When those irregular PRC are used, the positioning error gets higher. In this paper, we propose a strategy of detecting and correcting outliers, noise, and anomalies by modeling the changing pattern of PRC through polynomial curve fitting techniques. To validate our strategy, we compared positioning errors obtained without PRC calibation with those with PRC calibration. As a result, we found that our algorithm performs very well; the horizontal RMS error was 3.84 m before the correction and 1.49 m after the correction.

Modeling of GPS measurement noise for estimating smoothed pseudorange and ionospheric delay (평활화 된 의사거리 및 전리층 지연 추정을 위한 GPS 측정치 잡음 모델링)

  • Han, Deok-Hwa;Yoon, Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.602-610
    • /
    • 2012
  • Ionospheric delay error, one of main error sources in GPS signal, varies with signal frequency. Dual-frequency user uses L1, L2 frequency pseudorange to estimate the ionospheric delay, and there are errors caused by pseudorange measurement noise. So, filter is usually used to smooth the measurement. Weighted hatch filter can estimate optimal smoothed pseudorange measurement. But measurement noise model is needed to use this filter. In this paper, measurement noise modeling is conducted for NDGPS reference station. Using noise modeling result, weighted hatch filter estimate smoothed pseudorange measurement and ionospheric delay. Standard deviation of ionospheric dealy error drops to one-twenty fifth of non-filtered result.

Error Budget Analysis of Pseudorange for Improving the GPS Positioning Accuracy (GPS 위치정확도 향상을 위한 의사거리 오차의 분석에 관한 연구)

  • Kim, Yong-Il;Kim, Dong-Hyun;Kim, Byung-Guk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.79-90
    • /
    • 1996
  • It is well known that point positioning using a C/A-code receiver is severely biased by errors in pseudorange. This paper shows the procedures of quantitive analysis for several error elements and that some methods to monitor SA(selective availability) of witch process is not opened are proposed. It is possible to verify the effects of SA in the Doppler shift and receiver clock drift variation. Easy methods to reduce SA effects are to fit second order polynomials for the one and a linear function for the other. With periodic autocorrelation functions. SA effects are analyzed and first order Gauss-Markov process parameters are decided.

  • PDF

Correction Calculation based Pseudorange (의사거리 기반 보정정보 생성)

  • Choi, Jin-Kyu;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.98-99
    • /
    • 2007
  • It is necessary to use satellite radio navigation system as well as satellite radio navigation augmentation system such as differential Global Positioning System to achieve the positioning accuracy and reliability requested by International Maritime Organization in port and coastal area. Especially, position accuracy of DGPS user is effected by accuracy of pseudorange correction broadcasted from DGPS reference station. This paper shows pseudorange correction calculation algorithm adopting a non-common error estimation filter in order to improve accuracy of pseudorange correction. Finally, this paper verifies that the pseudorange correction calculated by adopting a non-common error estimation filter satisfies performance specifications of RTCM.

  • PDF

다중 기준국을 이용한 UDRE 추정기법 성능해석

  • Park, Sang-Hyeon;Seo, Gi-Yeol;Sin, Mi-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.25-26
    • /
    • 2011
  • 사용자 의사거리 보정 잔차(UDRE)는 위성항법보정정보의 측위성능을 예측하는데 이용하는 매우 중요한 무결성 감시정보이다. 위성항법보정정보 사용자는 위성별로 제공되는 사용자 의사거리 보정 잔차 정보를 이용하여 목표로 하는 측위성능을 보장할 수 있는지 여부를 계산하고, 이 결과를 반영하여 위성항법보강시스템의 보정정보를 사용할지 아니면, 무시할지를 판단한다. 즉, 사용자 의사거리 보정 잔차는 위성별로 제공되는 보정정보를 이용하여 보정을 한 후에도 제거되지 않고 남는 위성과 사용자 수신기 간의 통계학적 거리 오차로서 가우시안 분포를 갖는다고 본다. 따라서 동일한 위성항법신호 환경이라도 위성항법보강시스템의 종류와 응용분야별로 다르게 설정되는 측위성능의 보장 수준에 따라 사용자 의사거리 보정 잔차는 다른 값을 갖게 된다. 본 논문은 위성항법보강시스템의 무결성 감시성능에 영향을 미치는 사용자 의사거리 보정 잔차 추정기법의 성능해석을 목적으로 다중 기준국 원시정보를 이용한 사용자 의사거리 보정 잔차 추정기법 구조분석과 영향력을 소개하고, 성능에 영향을 미치는 인자와 사용자 의사거리 보정 잔차 추정성능의 지표에 대해 정의한다. 그리고 마지막으로 성능해석의 방법을 제안하고, 타당성을 검증한다.

  • PDF

A Study on Pseudo-Range Difference between Adjacent GPS Receivers (근접한 두 GPS 수신기의 의사거리 차 분석)

  • Kim, Hasong;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1756-1758
    • /
    • 2016
  • Pseudorange is the pseudo distance between a GPS satellite and a GPS receiver to determine the receiver's position. The closer the distance between jammer and victim receiver is, the more effective a repeat-back jamming is. In this letter, we analyze the pseudorange difference between adjacent GPS receivers using real GPS pseudorange data to understand the effects by the repeat-back jamming.

An Attitude Error Estimation Performance Comparison of Tightly Coupled INS/GPS Navigation System using Different Measurements (강결합 방식의 INS/GPS 시스템에서의 자세 오차 추정 성능 비교)

  • Yu, Hae-Sung;Kim, Cheon-Joong;Yoo, Ki-Jeong;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • This paper addresses the performance comparisons of the GPS pseudorange and pseudorange rate measurements in the tightly coupled INS/GPS Navigation systems. Even though the two measurements have the same ability in estimating level attitude errors, pseudorange rate has an advantage in improving estimating heading attitude error performance. The performance of pseudorange and pseudorange rate measurements is compared in numerical simulations and van test.

Based on Multiple Reference Stations Ionospheric Anomaly Monitoring Algorithm on Consistency of Local Ionosphere (협역 전리층의 일관성을 이용한 다중 기준국 기반 전리층 이상 현상 감시 기법)

  • Song, Choongwon;Jang, JinHyeok;Sung, Sangkyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.550-557
    • /
    • 2017
  • Ionospheric delay, which affect the accuracy of GNSS positioning, is generated by electrons in Ionosphere. Solar activity level, region and time could make change of this delay level. Dual frequency receiver could effectively eliminate the delay using difference of refractive index between L1 to L2 frequency. But, Single frequency receiver have to use limited correction such as ionospheric model in standalone GNSS or PRC(pseudorange correction) in Differential GNSS. Generally, these corrections is effective in normal condition. but, they might be useless, when TEC(total electron content) extremely increase in local area. In this paper, monitoring algorithm is proposed for local ionospheric anomaly using multiple reference stations. For verification, the algorithm was performed with specific measurement data in Ionospheric storm day (20. Nov. 2003). this algorithm would detect local ionospheric anomaly and improve reliability of ionospheric corrections for standalone receiver.