• 제목/요약/키워드: 의미 중의성 해소

검색결과 104건 처리시간 0.023초

어휘의미망을 이용한 중국어 비감독 어의 중의성 해소 (Chinese Unsupervised Word Sense Disambiguation using WordNet)

  • 롄광저;김민호;권혁철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.365-368
    • /
    • 2012
  • 어의 중의성 해소는 자연어처리에서 중요한 역할을 한다. 감독 중의성 해소 방법은 비감독 중의성 해소 방법보다 높은 성능을 나타내지만, 구축비용이 큰 대규모 의미부착 말뭉치가 필요하다. 본 논문에서는 중국어 어휘의미망(HowNet)과 의미 미부착 말뭉치를 이용한 중국어 비감독 어의 중의성 해소 방법을 제안한다. 의미 미부착 말뭉치에서 통계정보를 추출하고, 중국어 어휘 의미망에서 중의성 어휘의 의미별 형제어를 추출하여 중의성 어휘의 주변 문맥에 나타나는 어휘와 카이제곱검정(${\chi}^2$-test)에 의한 독립성 검정을 통해 어휘 간 연관성을 판단하고 중의성 해소를 한다. 본 논문에서 제안한 중의성 해소방법의 성능을 SemEval-2007 평가데이터에서 측정한 결과 명사와 동사에서 각각 64.7%, 49.4%를 나타냈다. 이는 SemEval-2007 중국어 비감독 중의성 해소에서 가장 높은 성능을 나타낸 시스템보다 13.1%, 13.9% 높은 성능이다.

한국어 어휘의미망에 기반을 둔 어의 중의성 해소 시스템의 구현 (Implementation of Word Sense Disambiguation System based on Korean WordNet)

  • 김민호;황명진;신종훈;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.96-102
    • /
    • 2008
  • 자연언어처리에서 어휘의 의미를 구분하는 것은 기계번역이나 정보검색과 같은 여러 응용 분야에서 매우 중요한 역할을 한다. 국내에서도 여러 어의 중의성 해소 시스템이 소개되었으나 대부분 시스템이 의미 부착 말뭉치를 이용한 감독 학습 방식을 기반으로 두고 있다. 본 논문은 한국어 어휘의미망을 이용한 비감독 어의 중의성 해소 시스템을 소개한다. 일반적으로 감독어의 중의성 해소 시스템은 비감독 어의 중의성 해소 시스템보다 성능은 좋으나 대규모의 의미 부착 말뭉치가 있어야 한다. 그러나 본 시스템은 한국어 어휘의미망과 의미 미부착 말뭉치에서 추출한 어휘 통계정보를 이용해, 의미 부착 말뭉치에서 추출한 의미별 통계 정보를 이용하는 감독 중의성 해소 방법과 같은 효과를 낸다. 본 시스템과 타 시스템의 성능 비교를 위해 'SENSEVAL-2' 평가 대회의 한국어 평가 데이터를 이용하였다. 실험 결과는 추출된 통계 정보를 바탕으로 우도비를 이용하였을 때 정확도 72.09%, 관계어 가중치를 추가로 이용하였을 때 정확도 77.02%로 감독 중의성 해소 시스템보다 높은 성능을 보였다.

  • PDF

어휘지도(UWordMap)를 이용한 용언의 다의어 중의성 해소 (Word Sense Disambiguation of Polysemy Predicates using UWordMap)

  • 배영준;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.167-170
    • /
    • 2013
  • 한국어 어휘의 의미를 파악하기 위하여 어휘의 의미 중의성을 해결하는 것은 중요한 일이다. 본 논문에서는 한국어 다의어 기반의 어휘 의미망과 용언의 논항정보 등의 관계가 포함된 어휘지도(UWordMap)를 사용하여 용언의 의미 중의성 해소에 대한 연구를 진행한다. 기존의 의미 중의성 해소 연구와 같은 동형이의어 단위가 아닌 다의어 단위의 용언 의미 중의성 해소 시스템을 개발하였다. 실험결과 실험말뭉치로 품사 태그 부착 말뭉치를 사용했을 때 동형이의어 단위 정확률은 96.44%였고, 다의어 단위 정확률은 67.65%였다. 실험말뭉치로 동형이의어 태그 부착 말뭉치를 사용했을 때 다의어 단위 정확률은 77.22%로 전자의 실험보다 약 10%의 높은 정확률을 보였다.

  • PDF

코어넷을 활용한 비지도 한국어 어의 중의성 해소 (Unsupervised Korean Word Sense Disambiguation using CoreNet)

  • 한기종;남상하;김지성;함영균;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

코어넷을 활용한 비지도 한국어 어의 중의성 해소 (Unsupervised Korean Word Sense Disambiguation using CoreNet)

  • 한기종;남상하;김지성;함영균;최기선
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

딥러닝을 이용한 한국어 어의 중의성 해소 (A Word Sense Disambiguation for Korean Language Using Deep Learning)

  • 김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.380-382
    • /
    • 2019
  • 어의 중의성 문제는 자연어 분석 과정에서 공통적으로 발생하는 문제로 한 가지의 단어 표현이 여러 의미로 해석될 수 있기 때문에 발생한다. 이를 해결하기 위한 어의 중의성 해소는 입력 문장 중 여러 개의 의미로 해석될 수 있는 단어가 현재 문맥에서 어떤 의미로 사용되었는지 분류하는 기술이다. 어의 중의성 해소는 입력 문장의 의미를 명확하게 해주어 정보검색의 성능을 향상시키는데 중요한 역할을 한다. 본 논문에서는 딥러닝을 이용하여 어의 중의성 해소를 수행하며 기존 모델의 단점을 극복하여 입력 문장에서 중의적 단어를 판별하는 작업과 그 단어의 의미를 분류하는 작업을 동시에 수행하는 모델을 제안한다.

  • PDF

주제어의 중의성 해소를 위한 Naive Bayes 분류기 적용에 관한 연구 (Application of a Naive Bayes Classifier for Topic Word Sense Disambiguation)

  • 유현숙;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2000년도 제7회 학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2000
  • 단어의 의미 중의성을 해소하는 것은 자연언어처리의 중요한 문제 중의 하나이다. 특히 문서의 주제어가 중의성을 가질 때, 이 문서는 부적합한 범주에 속하게 되어 정보검색시 잡음을 일으키는 원인이 되기도 한다. 그러므로, 본 논문에서는 문서를 대표하는 주재어의 의미 중의성을 해소하기 위해 주변 문맥자질을 고려하는 방법을 모색한다 이를 위해 자연언어처리의 통계적 방법으로 문서 범주화에 많이 사용되는 Naive Bayes 분류기를 중의성 해소에 적용하고, 그 결과 얻어진 중의성 해소 성능을 평가한다.

  • PDF

한국어 어휘의미망을 이용한 비감독 어의 중의성 해소 방법의 성능 향상 (An Enhanced Method for Unsupervised Word Sense Disambiguation using Korean WordNet)

  • 권순호;김민호;권혁철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.693-696
    • /
    • 2010
  • 자연언어처리에서 어의 중의성 해소(word sense disambiguation)는 어휘의 의미를 정확하게 파악하는 기술로 기계번역, 정보검색과 같은 여러 응용 분야에서 중요한 역할을 한다. 본 논문에서는 한국어 어휘의미망(Korlex)을 이용한 비감독 어의 중의성 해소 방법을 제안한다. 의미미부착 말뭉치에서 추출한 통계 정보와 한국어 어휘의미망의 관계어 정보를 이용함으로써 자료 부족문제를 완화하였다. 또한, 중의성 어휘와 공기어휘 간의 거리 가중치, 의미별 사용 정보 가중치를 사용하여 언어적인 특징을 고려하여 본 논문의 기반이 되는 PNUWSD 시스템보다 성능을 향상하였다. 본 논문에서 제안하는 어의 중의성 해소 방법의 평가를 위해 SENSEVAL-2 한국어 데이터를 이용하였다. 중의성 어휘의 의미별 관계어와 지역 문맥 내 공기어휘 간의 카이제곱을 이용하였을 때 68.1%의 정확도를 보였고, 중의성 어휘와 공기어휘 간의 거리 가중치와 의미별 사용 정보 가중치를 사용하였을 때 76.9% 정확도를 보여 기존의 방법보다 정확도를 향상하였다.

의미 중의성 해소를 위한 품사의 역할 : 영어와 한국어 비교 (Role of POS Tags in Word Sense Disambiguation : A comparison of English and Korean)

  • 조정미;김길창;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.407-411
    • /
    • 1998
  • 본 논문은 의미 중의성 해소에 있어서 품사 태깅의 중요성을 언급한 Wilks의 논문 [6]을 근거로 하여 한국어 의미 중의성 해소에 있어서의 품사 태깅의 역할을 살펴보고, 영어의 경우와 비교, 분석한다. 한국어 사전과 코퍼스를 각각 대상으로 품사 태깅을 이용한 의미 중의성 실험 결과, 한국어의 경우는 영어의 경우보다 품사를 이용한 의미 중의성 해소율이 떨어지는 결과를 보이고 있다.

  • PDF

한국어 단어 공간 모델을 이용한 단어 의미 중의성 해소 (Word Sense Disambiguation using Korean Word Space Model)

  • 박용민;이재성
    • 한국콘텐츠학회논문지
    • /
    • 제12권6호
    • /
    • pp.41-47
    • /
    • 2012
  • 한국어 단어의 의미 중의성 해소 방법들은 주로 소규모의 의미 태그 부착 말뭉치나 사전 정보 등을 이용하여 엔트로피 정보, 조건부 확률, 상호정보 등을 각각 계산하고 이를 중의성 해소에 이용하는 방법 등으로 다양하게 제안되었다. 본 논문에서는 대규모로 구축된 의미 태그 부착 말뭉치를 이용하여 한국어 단어 벡터를 추출하고 이 벡터들 사이의 유사도를 계산하여 단어 의미 중의성을 해소하는 단어 공간 모델 방법을 제안한다. 세종 형태의미분석 말뭉치를 사용하여 학습하고 임의의 200문장(583 단어 종류)에 대해 평가한 결과, 정확도가 94%로 기존의 방법에 비해 매우 우수했다.