• Title/Summary/Keyword: 의미 유사도

Search Result 1,910, Processing Time 0.032 seconds

Salient Video Frames Sampling Method Using the Mean of Deep Features for Efficient Model Training (효율적인 모델 학습을 위한 심층 특징의 평균값을 활용한 의미 있는 비디오 프레임 추출 기법)

  • Yoon, Hyeok;Kim, Young-Gi;Han, Ji-Hyeong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.318-321
    • /
    • 2021
  • 최근 정보통신의 발달과 함께 인터넷에 접속하는 사용자 수와 그에 따른 비디오 데이터의 전송량이 늘어나는 추세이다. 이렇게 늘어나는 많은 비디오 데이터를 관리하고 분석하기 위해서 최근에는 딥 러닝 기법을 많이 활용하게 된다. 일반적으로 비디오 데이터에 딥 러닝 모델을 학습할 때 컴퓨터 자원의 한계로 인해 전체 비디오 프레임에서 균등한 간격 또는 무작위로 프레임을 선택하는 방법을 많이 사용한다. 하지만 학습에 사용되는 비디오 데이터는 항상 시간 축에 따라 같은 문맥을 담고 있는 Trimmed 비디오라고 가정할 수가 없다. 만약 같지 않은 문맥을 지닌 Untrimmed 비디오에서 균등한 간격 또는 무작위로 프레임을 선택해서 사용하게 된다면 비디오의 범주와 관련이 없는 프레임이 샘플링 될 가능성이 있기 때문에 모델의 학습 및 최적화에 전혀 도움이 되지 않는다. 이를 해결하기 위해 우리는 각 비디오 프레임에서 심층 특징을 추출하여 평균값을 계산하고 이와 각 추출된 심층특징들과 코사인 유사도를 계산해서 얻은 유사도 점수를 바탕으로 Untrimmed 비디오에서 의미 있는 비디오 프레임을 추출하는 기법을 제안한다. 그리고 Untrimmed 비디오로 구성된 데이터셋으로 유명한 ActivityNet 데이터셋에 대해서 대표적인 2가지 프레임 샘플링 방식(균등한 간격, 무작위)과 비교하여 우리가 제안하는 기법이 Untrimmed 비디오에서 효과적으로 비디오의 범주에 해당하는 의미 있는 프레임 추출이 가능함을 보일 것이다. 우리가 실험에 사용한 코드는 https://github.com/titania7777/VideoFrameSampler에서 확인할 수 있다.

  • PDF

Content based data search using semantic annotation (시맨틱 주석을 이용한 내용 기반 데이터 검색)

  • Kim, Byung-Gon;Oh, Sung-Kyun
    • Journal of Digital Contents Society
    • /
    • v.12 no.4
    • /
    • pp.429-436
    • /
    • 2011
  • Various documents, images, videos and other materials on the web has been increasing rapidly. Efficient search of those things has become an important topic. From keyword-based search, internet search has been transformed to semantic search which finds the implications and the relations between data elements. Many annotation processing systems manipulating the metadata for semantic search have been proposed. However, annotation data generated by different methods and forms are difficult to process integrated search between those systems. In this study, in order to resolve this problem, we categorized levels of many annotation documents, and we proposed the method to measure the similarity between the annotation documents. Similarity measure between annotation documents can be used for searching similar or related documents, images, and videos regardless of the forms of the source data.

Korean Indicative Summarization Using Aggregate Similarity (도합유사도를 이용한 한국어 추출문서 요약)

  • 김재훈;김준홍
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.238-244
    • /
    • 2000
  • 본 논문에서 문서는 문서관계도라고 하는 그래프로 표현된다. 노드는 문서의 구성요소인 문장을 표현하고, 링크는 노드들 간의 의미적인 관계를 나타낸다. 의미적 관계는 유사도에 의해서 결정되며, 문장의 중요도는 도합유사도로 나타낸다. 도합유사도는 한 노드와 인접한 노드들 사이의 유사도 합을 말한다. 본 논문에서는 도합유사도를 이용한 한국어 문서요약 기법을 제안한다. 실험에 사용된 평가용 요약문서는 정보처리 관련 분야에서 수집된 논문 100편과 KORDIC 에서 구축한 신문기사 105 건을 이용하였다. 문서요약 시스템에 의해서 생성된 요약문서의 크기가 본문 20%이고, 본문이 논문(서론과 결론)일 경우, 재현율과 정확률은 각각 46.6%와 76.9%를 보였으며, 또한 본문이 신문기사일 경우, 재현율과 정확률은 각각 30.5%과 42.3%를 보였다. 또한 제안된 방법은 상용시스템보다 좋은 성능을 보였다.

  • PDF

The Analysis of Compound Nouns based on Semantic Processing (의미기반 한국어 복합명사 분석)

  • Lee, Yong-Hoon;Ock, Cheol-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.221-224
    • /
    • 2011
  • 본 논문에서는 U-WIN의 어휘 관계 정보를 기반으로 얻은 구성명사간 2-gram 유사도 분석 결과를 이용해 의미기반 복합명사 분석을 수행하는 방법을 제안한다. 음절별 분해 패턴의 제한을 없애기 위해 모든 경우로 후보를 분해하여 규칙에 따라 분석에 사용될 최적의 분해 후보를 찾으며 분석시간, 비교대상을 줄이고 정확도를 높이기 위해 사전의 원어정보를 이용한다. 유사도는 각 개념을 구성하는 관련명사 집합들간의 비교로 구하며 가장 큰 문제인 데이터 부족 문제를 해결하기 위해 7종류의 대상으로부터 추출한 관련명사들을 이용한다.

Korean Indicative Summarization Using Aggregate Similarity (도합유사도를 이용한 한국어 추출문서 요약)

  • Kim, Jae-Hoon;Kim, Jun-Hong
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.238-244
    • /
    • 2000
  • 본 논문에서 문서는 문서관계도라고 하는 그래프로 표현된다. 노드는 문서의 구성요소인 문장을 표현하고, 링크는 노드들 간의 의미적인 관계를 나타낸다 의미적 관계는 유사도에 의해서 결정되며, 문장의 중요도는 도합유사도로 나타낸다. 도합유사도는 한 노드와 인접한 노드들 사이의 유사도 합을 말한다. 본 논문에서는 도합유사도를 이용한 한국어 문서 기법을 제안한다. 실험에 사용된 평가용 요약문서는 정보처리 관련 분야에서 수집된 논문 100편과 KORDIC에서 구축한 신문기사 105건을 이용하였다. 문서 시스템에 의해서 생성된 문서의 크기가 본문의 20%이고, 본문이 논문(서론과 결론)일 경우, 재현율과 정확률은 각각 46.6%와 76.9%를 보였으며, 또한 본문이 신문기사일 경우, 재현율과 정확률은 각각 30.5%과 42.3%를 보였다. 또한 제안된 방법은 상용시스템보다 좋은 성능을 보였다.

  • PDF

Similarity Computation for XML Document with Semantically Extended Tags (의미적으로 확장된 태그들을 이용한 XML 문서들의 유사성 계산.)

  • Song, In-Sang;Paik, Ju-Ryun;Kim, Ung-Mo
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.369-372
    • /
    • 2006
  • XML(eXtensible Markup language) 사용의 급속한 증가는 웹에 존재하는 많은 양의 정보들을 XML기반 데이터로 생성하게 했으며 저장과 교환에 있어서 표준이 되도록 했다. 이는 사용자에 의한 임의의 태그정의를 가능하게 하는 XML 사용의 용이성에 기반한다. 그러나 이러한 장점은 비슷한 내용을 갖는 XML 문서에 대해서 사람들마다 개개의 태그이름과 구조를 사용한다는 문제점을 만든다. 따라서 유사한 의미를 가지고 있지만 서로 다른 문서로 분류된다. 이러한 점을 개선하기 위해 XML 문서 태그들 간의 벡터 스페이스 모델과 XML 데이터를 이용하여 시소러스를 구축하는 방법 등이 연구되고 제안되어 왔지만 아직 초보적인 단계이다. 본 논문에서는 XML 문서를 구성하는 태그들을 동의어로 확장하여 벡터를 생성하고 생성된 벡터를 가지고 태그들 간의 유사성을 체크하여 서로 다른 XML 문서들의 유사성을 수치적으로 계산한다.

  • PDF

Ontology-Based Document Classification (온톨로지 기반 웹 문서 분류)

  • 송무희;임수연;민도식;강동진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.535-537
    • /
    • 2003
  • 본 논문에서는 웹 문서들이 가지는 용어 정보들과 어휘들의 의미구조를 계층적 형태로 표현한 온틀로지 기반 자동 문서분류 방법을 제안한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 점하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하며, 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.

  • PDF

Design of Similar Image Search System using Ontology Annotation (온톨로지 어노테이션을 이용한 유사이미지 검색 시스템의 설계)

  • No, Hyun-Deok;Lee, Taewhi;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.674-675
    • /
    • 2015
  • 최근 이미지가 가지는 의미적 정보를 온톨로지로 어노테이션한 후 이미지를 분류하고 검색하는 방법들이 제안되고 있다. 하지만 이미지 검색이 어노테이션된 데이터에 SPARQL 질의를 통해 이루어지기 때문에 질의 결과와 일치하는 이미지들만 검색이 된다. 본 논문에서는 기존의 의미 기반 질의 방식이 아닌 이미지에 어노테이션된 온톨로지를 이용하여 유사 이미지를 검색하는 시스템을 제안한다. 설계된 시스템은 이미지가 가지는 태그 정보를 RDF 온톨로지로 확장하는 기존 연구에 추가적으로 온톨로지 유사 매칭 알고리즘을 사용하여 사용자가 원하는 유사 이미지를 검색할 수 있도록 한다.

Various Paraphrase Generation Using Sentence Similarity (문장 유사도를 이용한 다양한 표현의 패러프레이즈 생성)

  • Park, Da-Sol;Chang, Du-Seong;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.576-581
    • /
    • 2021
  • 패러프레이즈란 어떤 문장을 같은 의미를 가지는 다른 단어들을 사용하여 표현한 것들을 의미한다. 이는 정보 검색, 다중 문서 요약, 질의응답 등 여러 자연어 처리 분야에서 중요한 역할을 한다. 특히, 양질의 패러프레이즈 코퍼스를 얻는 것은 많은 시간 및 비용이 소요된다. 이러한 문제점을 해소하기 위해 본 논문에서는 문장 유사도를 이용한 패러프레이즈 쌍을 구축하고, 또 구축한 패러프레이즈 쌍을 이용하여 기계 학습을 통해 새로운 패러프레이즈을 생성한다. 제안 방식으로 생성된 패러프레이즈 쌍은 기존의 구축되어 있는 코퍼스 내 나타나는 표현들로만 구성된 페러프레이즈 쌍이라는 단점이 존재한다. 이러한 단점을 해소하기 위해 기계 학습을 이용한 실험을 진행하여 새로운 표현에 대한 후보군을 추출하는 방법을 적용하여 새로운 표현이라고 볼 수 있는 후보군들을 추출하여 기존의 코퍼스 내 새로운 표현들이 생성된 것을 확인할 수 있었다.

  • PDF

The method for extraction of meaningful places based on behavior information of user (실생활 정보를 이용한 사용자의 의미 있는 장소 추출 방법)

  • Lee, Seung-Hoon;Kim, Bo-Keong;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.503-508
    • /
    • 2010
  • Recently, the advance of mobile devices has made various services possible beyond simple communication. One of services is the predicting the future path of users and providing the most suitable location based service based on the prediction results. Almost of these prediction methods are based on previous path data. Thus, calculating similarities between current location information and the previous trajectories for path prediction is an important operation. The collected trajectory data have a huge amount of location information generally. These information needs the high computational cost for calculating similarities. For reducing computational cost, the meaningful location based trajectory model approaches are proposed. However, most of the previous researches are considering only the physical information such as stay time and the distance for extracting the meaningful locations. Thus, they will probably ignore the characteristics of users for meaningful location extraction. In this paper, we suggest a meaningful location extracting and trajectory simplification approach considering the stay time, distance, and additionally interaction information of user. The method collects the location information using GPS device and interaction information between the user and the others. Using these data, the proposed method defines the proximity of the people who are related with the user. The system extracts the meaningful locations based on the calculated proximities, stay time and distance. Using the selected meaningful locations the trajectories are simplified. For verifying the usability of the proposed method, we collect the behavioral data of smart phone users. Using these data, we measure the suitability of meaningful location extraction method, and the accuracy of prediction approach based on simplified trajectories. Following these result, we confirmed the usability of proposed method.