Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.473-475
/
2021
유의어 추천을 구현하기 위해서는 각 단어 사이의 유사도를 계산하는 것이 필수적이다. 하지만, 기존의 단어간 유사도를 계산하는 여러 방법들은 데이터셋에 등장하지 않은 단어에 대해 유사도를 계산 할 수 없다. 이 논문에서는 이를 해결하기 위해 언어모델의 PPL을 활용하여 단어간 유사도를 계산하였고, 이를 통해 유의어를 추천했을 때 MRR 41.31%의 성능을 확인했다.
The success of XML(eXtensible Markup Language) is primarily based on its flexibility : everybody can define the structure of XML documents that represent information in the form he or she desires. XML is so flexible that XML documents cannot be automatically provided with an underlying semantics. Different tag sets, different names for elements or attributes, or different document structures in general mislead the task of classifying and clustering XML documents precisely. In this paper, we design and implement a system that allows checking the semantic-based similarity between XML tags. First, this system extracts the underlying semantics of tags and then expands the synonym set of tags using an WordNet thesaurus and user-defined word library which supports the abbreviation forms and compound words for XML tags. Seconds, considering the relative importance of XML tags in the XML documents, we extend a conventional vector space model which is the most generally used for document model in Information Retrieval field. Using this method, we have been able to check the similarity between XML tags which are represented different tags.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.559-561
/
2004
본 논문에서는 다의어의 현실적인 의미 분포의 결정에 대해 이야기 하고자 한다. 수동으로 구축한 의미체계인 사전이나 시소러스들은 그 의미구분의 경개가 모호하고 비현실적인 부분이 많아서 언어처리 시스템의 적용에 문제점으로 지적되고 있다. 그러므로, 본 연구에서는 대용량 코퍼스에서 추출한 공기정보와 자동 군집화 방법들을 사용하여 실질적인 다의어의 의미 경계를 발견하는 방법을 제안하였다. 수동 구축된 사전과 코퍼스 기반 사전의 다의어 의미 분포와 비교해 본 결과, 본 논문에서 제안한 방법의 결과가 코퍼스 기반 사전의 의미 분포와 매우 유사한 결과를 보이는 것을 확인할 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.3-3
/
2017
하천에서 발생하는 유사량은 공급능력이 흐름의 이송능력보다 지배적인 경우 같은 유량이 발생하더라도 유사량이 다르게 관측될 수 있다. 특히 국내 하천과 같이 홍수기가 특정기간에 편중되어 연중 유량발생 편차가 매우 크게 나타나는 경우 이와 같은 현상이 더욱 두드러지게 발생한다. 즉, 대부분의 연중발생 유사량이 홍수시에 이동하고 홍수발생 초기와 후기의 유사 공급능력의 차이가 나타나는 국내하천의 경우 이를 기존의 유사이송공식으로 정량적인 유사량 값을 추정하는데는 한계가 있음을 의미한다. 따라서 본 연구에서는 국내 하천에서 실측한 유사량 자료를 종합하고 주요 지점별, 연도별, 계절별, 하천 유역별로 분류한 후 이를 분석하여 국내하천의 유사량 발생 특성을 규명하였다. 실측 유사량 데이터베이스는 국내 하천의 주요지점에서 2007년부터 2012년까지 측정한 자료로 구성되어 있으며 총 26개 지점 1,283개의 자료를 포함하고 있다. 4대강의 본류 대표지점으로 선정된 여주, 왜관, 공주, 나주지점을 대상으로 유량-총유사량 관계를 비교한 결과, 여주지점의 유량 증가에 따른 총유사량 증가 폭이 다른 대표지점들에 비해 가장 크게 나타나는 반면, 나주지점의 경우 제일 작은 값을 보인다. 또한 본류의 유량-유사량 관계식의 지수 값이 본류와 지류를 모두 포함한 관계식에 비해 더 크게 나타나는데 이는 지류에서는 본류보다 적은 유량이 발생하더라도 유사 이송량은 상대적으로 크게 발생한다는 것을 의미하며 그 이유는 본류와 지류에서 유사 이송이 지배적으로 발생하는 유량범위가 상이하기 때문에 나타나는 결과로 추정할 수 있다. 대표지점별 부유사 농도를 분석한 결과, 7월과 8월 부유사 농도에 비해 9월에 발생하는 부유사 농도가 현저히 낮은 값을 보이는데 이는 연중 홍수기 전반기에 유사 공급량이 상대적으로 많아 나타나는 현상으로 판단된다.
The Journal of the Korea institute of electronic communication sciences
/
v.11
no.7
/
pp.677-684
/
2016
With the increase of multimedia information such as image, researches on extracting high-level semantic information from low-level visual information has been realized, and in order to automatically generate this kind of information. Various technologies have been developed. Generally, image retrieval is widely preceded by comparing colors and shapes among images. In some cases, images with similar color, shape and even meaning are hard to retrieve. In this article, in order to retrieve the object in an image, technical value of middle level is converted into meaning value of middle level. Furthermore, to enhance accuracy of segmentation, K-means algorithm is engaged to compute k values for various images. Thus, object retrieval can be achieved by segmented low-level feature and relationship of meaning is derived from ontology. The method mentioned in this paper is supposed to be an effective approach to retrieve images as required by users.
Various Korean word sense disambiguation methods have been proposed using small scale of sense-tagged corpra and dictionary definitions to calculate entropy information, conditional probability, mutual information and etc. for each method. This paper proposes a method using Korean Word Space model which builds word vectors from a large scale of sense-tagged corpus and disambiguates word senses with the similarity calculation between the word vectors. Experiment with Sejong morph sense-tagged corpus showed 94% precision for 200 sentences(583 word types), which is much superior to the other known methods.
Conventional way to search documents is keyword-based queries using vector space model, like tf-idf. Searching process of documents which is based on keywords can make some problems. it cannot recogize the difference of lexically different but semantically same words. This paper studies a scheme of document search based on document queries. In particular, it uses centrality vectors, instead of tf-idf vectors, to represent query documents, combined with the Word2vec method to capture the semantic similarity in contained words. This scheme improves the performance of document search and provides a way to find documents not only lexically, but semantically close to a query document.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.590-592
/
2003
최근 XML이 웹 상의 데이터의 표현, 교환, 중재의 표준으로 각광받으면서 이러한 XML 문서를 효과적으로 저장, 접근 및 검색하기 위한 기법에 대한 연구가 많았으나, 기존의 연구들은 하나의 XML 문서를 저장 및 검색의 대상으로 하는 경우가 대부분이였다. 그러나 XML 문서를 데이터의 표현과 교환의 표준으로 이용하는 애플리케이션의 개발이 점차 활성화됨에 따라 저장해야하는 XML 문서의 수가 크게 증가하면서 의미나 구조적으로 많은 유사성을 지니는 XML 문서들을 함께 효율적으로 저장하고 검색하기 위한 기법의 연구가 요구된다. 따라서 본 논문에서는 의미 및 구조적으로 유사성을 가지는 여러 XML 문서들을 통합하는 기법을 제안한다. 제안된 통합 기법은 같은 DTD나 XML Schema를 가지는 경우와 다른 DTD나 XML Schema를 가지는 경우를 모두 고려한다. 또한 특별한 구조적 정보를 가지지 않는 XML 문서의 경우도 다른 DTD나 XML Schema를 가지는 경우와 마찬가지로 처리함으로써 다양한 XML 문서들에 대한 통합이 가능하도록 한다. 이러한 통합 기법은 중복되는 엘리먼트나 애트리뷰트에 대한 저장 공간의 낭비를 최소화한다. 또한 의미적으로 또는 구조적으로 관련성있는 여러 XML 문서의 부분들을 디스크 상의 페이지내에 서로 가까이 저장할 수 있기 때문에 사용자의 일반적인 질의에 대해 효율적이고 빠른 검색 결과를 유도할 수 있고, I/O 횟수를 줄임으로써 그에 따른 오버헤드를 줄일 수 있는 장점이 있다.
Owing to importance of document copyright the need to detect document duplication and plagiarism is increasing. Many studies have sought to meet such need, but there are difficulties in document duplication detection due to technological limitations with the processing of natural language. This thesis designs and implements a discriminator of similar documents with natural language processing technique. This system discriminates similar documents using morphological analysis, syntactic analysis, and weight on low frequency and idiom. To evaluate the system, we analyze the correlation between human discrimination and term-based discrimination, and between human discrimination and proposed discrimination. This analysis shows that the proposed discrimination needs improving. Future research should work to define the document type and improve the processing technique appropriate for each type.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.