This paper presents the part-of-speech set which is highly efficient at knowledge-based word sense disambiguation for Korean nouns. 174,000 sentences extracted for test set from Sejong semantic tagged corpus whose sense is based on Standard korean dictionary. We disambiguate selected nouns in test set using glosses and examples in Standard Korean dictionary. 15 part-of-speeches which give the best performance for all test set and 17 part-of-speeches which give the best performance for accuracy average of selected nouns are selected. We obtain 12% more performance by those part-of-speech sets than by full 45 part-of-speech set.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.508-510
/
2002
인터넷의 발전과 더불어 기하급수적으로 늘어난 디지털 정보를 대상으로 사용자의 요구를 만족시키는 정보검색을 하기 위해 자연어처리 기술이 많이 응용되고 있다. 본 논문에서는 정보검색에 자연어 처리 기술 중, 의미중의성 해소(WSD) 기술을 적용하였다. HANTEC 12만 문서를 대상으로 9개의 중의성 단어를 실험한 결과 67.8%의 정확률을 보였다. 본 실험을 통해 WSD의 오분석이 정보검색의 정확률에 상당히 민감한 결과를 초래함을 알 수 있었다. 그리고, WSD 기술이 정보검색에 적용된 떼 발생할 수 있는 여러 문제점들에 대하여 논의하였고, 이 문제점의 근원적인 해결방안은 WSD기술의 발전에 있다는 것을 알 수 있었다.
Kim, Youngsik;Hahm, Younggyun;Kim, Jiseong;Hwang, Dosam;Choi, Key-Sun
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.100-106
/
2014
URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2002.05a
/
pp.21-27
/
2002
본 논문은 문장 안에서 의미 중의성을 갖는 단어가 출현했을 때 그 단어가 어떤 의미로 사용되고 있는지 판별해 주는 방법을 제시하고자 한다. 이를 위해서 먼저 중의적 의미를 가지는 단어의 각 의미 (sense) 마다에 대하여 이 의미를 나타내는 주요단어 즉 종자단어와 연관성이 있는 단어들로 벡터를 구성하여 이 의미를 나타내고자 한다. 종자단어와 말뭉치의 문장을 통하여 연결된 경로를 가진 단어는 이 종자단어에 해당하는 의미를 나타내는 데 기여하는 정보로 본 것이다. 경로는 동일 문장에서 나타나는 두 단어 사이는 링크가 있다고 보고 이러한 링크를 통하여 이루어 질 수 있는 연결 관계를 나타낸다. 이 기법의 장점은 데이터 부족으로 야기되는 문제를 경감시킬 수 있다는 점이다. 실험을 위해 Hantec 품사 부착된 말뭉치를 이용하여 의미정보벡터를 구축하였으며 ETRI 품사 부착된 말뭉치에서 중의적 단어가 포함된 문장을 추출하여 실시하였다. 실험 결과 기존의 방법보다 나은 성능을 보임이 밝혀졌다.
Recently, Unsupervised Word Sense Disambiguation research has focused on Graph based disambiguation. Graph-based disambiguation has built a semantic graph based on words collocated in context or sentence. However, building such a graph over all ambiguous word lead to unnecessary addition of edges and nodes (and hence increasing the error). In contrast, our work uses Word2Vec to consider the most similar words to an ambiguous word in the context or sentences, to rebuild a graph of the matched words. As a result, we show a higher F1-Measure value than the previous methods by using Word2Vec.
This study proposes a Word Sense Disambiguation (WSD) algorithm, based on concept learning with special emphasis on statistically meaningful lowest frequency words. Previous works on WSD typically make use of frequency of collocation and its probability. Such probability based WSD approaches tend to ignore the lowest frequency words which could be meaningful in the context. In this paper, we show an algorithm to extract and make use of the meaningful lowest frequency words in WSD. Learning method is adopted from the Find-Specific algorithm of Mitchell (1997), according to which the search proceeds from the specific predefined hypothetical spaces to the general ones. In our model, this algorithm is used to find contexts with the most specific classifiers and then moves to the more general ones. We build up small seed data and apply those data to the relatively large test data. Following the algorithm in Yarowsky (1995), the classified test data are exhaustively included in the seed data, thus expanding the seed data. However, this might result in lots of noise in the seed data. Thus we introduce the 'maximum a posterior hypothesis' based on the Bayes' assumption to validate the noise status of the new seed data. We use the Naive Bayes Classifier and prove that the application of Find-Specific algorithm enhances the correctness of WSD.
Journal of the Korean Society for Library and Information Science
/
v.43
no.3
/
pp.163-180
/
2009
In this paper, we describe a developmental system for establishing personal information tendency based on user queries. For each query, the system classified it based on the category information using a kNN classifier. As category information, we used DDC field which is already assigned to each record in the database. The system accumulates category information for all user queries and the user's personalized feature for the target database. We then developed a personalized retrieval system reflecting the personalized feature to produce search result. Our system re-ranks the result documents by adding more weights to the documents for which categories match with the user's personalized feature. By using user's tendency information, the ambiguity problem of the word could be solved. In this paper, we conducted experiments for personalized search and word sense disambiguation (WSD) on a collection of Korean journal articles of science and technology arena. Our experimental result and user's evaluation show that the performance of the personalized search system and WSD is proved to be useful for actual field services.
Proceedings of the Korean Society for Cognitive Science Conference
/
2006.06a
/
pp.61-65
/
2006
본 연구는 한국어 어휘중의성 해결과정에 관련된 대뇌활동을 살펴보기 위하여 MEG(magnetoencephalography)를 이용한 실험을 실시하였다. 일차적으로 기존의 중의성 관련 fMRI 실험 결과들이 MEG를 이용한 신호원 국소화 결과와 유사한 패턴을 보이는지 확인하였고, 본 실험의 주요 목적인 중의성 관련 처리과정에 기저하는 하위 처리과정이 어떠한 기능적 처리 요소들로 분해될 수 있는 지에 대해서도 시간 해상도가 높은 MEG의 특성을 이용하여 관찰하였다. 분석 결과, 한국어 중의어 해소과정의 하위처리 과정은 어휘의미 접속이라는 기본적인 과정 비에, 이들의 의미분지를 유발하는 단서의 유무가 그 활성화 영역의 시간적인 패턴과 중의성 해결을 위한 지속시간에 영향을 미치는 것으로 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.