This study classified the type of sole for female high school students and analyzed the characteristics of each type by the shape of the sole (plantar view) using 2D scan data. The data were collected from a foot anthropometry of 310 female high school students in Gwangju and Jeollanam-do. Left feet and right feet were measured indirectly by using flatbed scanner. The sole anthropometric measurements consisted of 24 items. The results of the investigation into the differences between left and right feet soles by the 2D measurements data indicated that there was no significant statistical differences in the length of items. The left sole had higher values than right sole in the width items and angle items; however, the lateral side of the right feet projected to the outside more often than left feet. In analyzing foot sole of female high school students, the shapes of sole were classified into three types. Type 1(41.94%), Type 2(36.77%), Type 3(21.29%). The most characteristic sole type for female high school students was Type 1. Type 1 referred to a narrow foot width with little or no curvature of the toe. Type 2 represented the longest foot, with foot width shown as a spacious and distinctive feature in width at the medial area of the foot. Type 3 represented the shortest and widest of ball width, gathered inside toe 5, and lateral side as the most projected among the three types.
So Young Lee;Hye Seon Jeong;Yoon Sung Choi;Choong Kwon Lee
Smart Media Journal
/
v.12
no.7
/
pp.43-51
/
2023
As online transactions increase, the image of clothing has a great influence on consumer purchasing decisions. The importance of image information for clothing materials has been emphasized, and it is important for the fashion industry to analyze clothing images and grasp the materials used. Textile materials used for clothing are difficult to identify with the naked eye, and much time and cost are consumed in sorting. This study aims to classify the materials of textiles from clothing images based on deep learning algorithms. Classifying materials can help reduce clothing production costs, increase the efficiency of the manufacturing process, and contribute to the service of recommending products of specific materials to consumers. We used machine vision-based deep learning algorithms ResNet and Vision Transformer to classify clothing images. A total of 760,949 images were collected and preprocessed to detect abnormal images. Finally, a total of 167,299 clothing images, 19 textile labels and 20 fabric labels were used. We used ResNet and Vision Transformer to classify clothing materials and compared the performance of the algorithms with the Top-k Accuracy Score metric. As a result of comparing the performance, the Vision Transformer algorithm outperforms ResNet.
Journal of the Korean Society of Clothing and Textiles
/
v.30
no.12
s.159
/
pp.1768-1777
/
2006
As the fashion industry comes under the influence of globalization throughout all fields of industry, the globalization and the market entry strategies are required for Korean fashion firms. This study attempted to analyze the factors influencing foreign entry mode of Korean fashion business based on Eclectic Theory. Data collection has been carried out from November 25 until December 25, 2005. The questionnaires were sent through e-mail or fax to 622 trading companies. 67 questionnaires were returned for a response rate of 10.7%. Of these returns, 61 usable questionnaires were employed for data analyses. Descriptive analysis, factor analysis, discriminant analysis, and t-test were used for data analysis. First, the most important venture motivation was price competitiveness and many firms were engaged in both production and sales in their target countries, which were mainly in Southeast Asia. Second, the firm's ability and experience were found out as ownership advantage factor, investment stability and market potential as location advantage factor, and contract stability as internalization advantage factor. Third, the result of discriminant analysis showed that location advantage factor was a significant factor in predicting the entry of fashion firms into foreign countries.
Journal of the Korean Society of Clothing and Textiles
/
v.41
no.2
/
pp.378-391
/
2017
The application of Big Data has been introduced to the Korean fashion industry; however, the literature has not yet investigated how well high technologies are being perceived and adopted by the practitioners of fashion companies. Recognizing the lack of research, the current research explores how big data analysis has been adopted by fashion practitioners based on the Technology Acceptance Model (TAM) that considers the effect of organizational characteristics (i.e., innovation, slack, and IS infra maturity). First, all TAM relationships were accepted as significant; however, the effect of perceived ease of use on the attitude toward big data was greater than perceived usefulness. Regarding organizational characteristics, while organization innovation had positive impacts on perceived usefulness as well as perceived ease of use, organization slack did not show significant and positive influence on perceived ease of use only. On the other hand, IS infra maturity had a negative effect on perceived usefulness while it did not have any significant impact on perceived ease of use. Finally, the level of perceived usefulness is decreasing as the IS infra of the fashion organization becomes more mature. With the results, the study suggested that fashion industry needs more education on the usage of big data analysis systems and development in related analysis tools.
Due to the nature of fashion design that responds quickly and sensitively to changes, accurate forecasting for upcoming fashion trends is an important factor in the performance of fashion product planning. This study analyzed the major phenomena of fashion trends by introducing text mining and a big data analysis method. The research questions were as follows. What is the key term of the 2010SS~2019FW fashion trend? What are the terms that are highly relevant to the key trend term by year? Which terms relevant to the key trend term has shown high frequency in news articles during the same period? Data were collected through the 2010SS~2019FW Pre-Trend data from the leading trend information company in Korea and 45,038 articles searched by "fashion+material" from the News Big Data System. Frequency, correlation coefficient, coefficient of variation and mapping were performed using R-3.5.1. Results showed that the fashion trend information were reflected in the consumer market. The term with the highest frequency in 2010SS~2019FW fashion trend information was material. In trend information, the terms most relevant to material were comfort, compact, look, casual, blend, functional, cotton, processing, metal and functional by year. In the news article, functional, comfort, sports, leather, casual, eco-friendly, classic, padding, culture, and high-quality showed the high frequency. Functional was the only fashion material term derived every year for 10 years. This study helps expand the scope and methods of fashion design research as well as improves the information analysis and forecasting capabilities of the fashion industry.
The purpose of this study is to classify the body types of obese men in their 50-60s and compare them with those of obese middle-aged men in their 30-40s. The 3D anthropometric data of obese men aged 50 to 60 years from the 6th Size Korea. The data are analyzed using SPSS 25.0 for Windows, and descriptive statistics, χ2 test, correlation analysis, and cluster analysis are used to classify obese body types. As a result of the study, five factors are extracted to determine body types, which are classified into three obese body types through cluster analysis. 1) a large physique and consequently large circumference and height; 2) A short upper body length, short height, and thick belly; 3) the lowest rate of obesity and relatively flat abdominal curve. For the 30-40s group, Type1 showed the highest rate at 55.6%, whereas for the 50s group, Type3 showed the highest rate at 49.3%, and for 60s group, Type2 showed the highest rate at 41.2%. The classification accuracy of the discriminant function for each type is 94.7%, indicating relatively high accuracy. Furthemore, the recently changed obese body type are analyzed by comparing it with the 3D anthropometric data of 8th Size Korea, which will contribute to the utilization of basic data for manufacturing apparel for obese men.
This study classified and analyzed the upper body types of 7-13 years old elementary school boys, using 3D data from the 6th Size Korea. The results of this study are as follows. Seven factors were extracted from the factorial analysis as an independent factor for a cluster analysis. The cluster analysis generated four body types. Type 1 has large ratio of front and back depth as well as circumference, with a front protrusion. In Type 2, the vertical value of upper torso is longer than average; in addition, its flatness is the largest and produces a thin body type. Type 3 has a smaller flatness in the bust, waist, abdomen and hip than other types, while also having the largest BMI. Type 4 is characterized by a greater shoulder angle than other types and its other factors are close to average. As a result of the logistic regression analysis, the prediction model used eight variables to generate and its accuracy is 88.679%. The classification of upper body types from this study can be used as basic data to improve patternmaking for each body type. The generated prediction model is also expected to be used as a method to help classify upper body types using the eight variables.
This study categorizes and analyzes hand types based on 2-Dimensional measurements of women in their 60-80's in order to establish initial data that can help develop a well-fitted glove and hand protector for elderly women. A total of 22 measurement items were selected to provide information about Size Korea (2010) 3D hand measurements. Participants in the study were 353 elderly women over the age of 60. Subjects were divided into two age groups (60's and over 70's). Statistical tests (such as Descriptive Analysis and T-test) analyzed the data and ascertained the age differences. A factor analysis and cluster analysis were conducted to classify elderly women hand types. The disparities between 20-30's and over 60's age groups were compared by T-test with the SPSS 20 program for Windows. The results in this study are follows: The hand shapes for elderly women were divided into 3 groups. Elderly women's Hand Type A is average length and the medium breadth hand type. Type B is the biggest length and breadth, Type C is the smallest length and breadth hand type. There were significant differences in the 20-30's and over 60's age groups for most hand length and breadth items. In addition, the mean measurement value of the length items decreased as the age increased; however, the diversity of items increased, so that it became shorter and wider. Further study should include the classification of hand shape dimensions for each figure type of sizing gloves for elderly women. We expect hand types to be applicable to the manufacture of gloves for elderly women.
Journal of Korean Home Economics Education Association
/
v.34
no.3
/
pp.1-23
/
2022
This study examined the perceptions of Myanmar university students and professors regarding the status and necessity of higher education programs in fashion. Data were collected from professors in textile engineering at Yangon Technological University and Myanmar university students. Closed- and open-ended questions were asked either through interviews or by email. The responses were analyzed using keyword extraction and categorization, and descriptive statistics(closed questions). Generally, the professors perceived higher education, as well as the cultural industries including art and fashion, as important for Myanmar's social and economic development. According to the students interests in pursuing a degree in textile were limited, despite the high interest in fashion. Low wages in the apparel industry and lack of fashion degrees that meet the demand of students were cited as reasons. The demand was high for educational programs in fashion product development, fashion design, pattern-making, fashion marketing, branding, management, costume history, and cultural studies. Students expected to find their future career in textiles and clothing factories. Many students wanted to be hired by global fashion brands for higher salaries and training for advanced knowledge and technical skills. They perceived advanced fashion education programs will have various positive effects on Myanmar's national economy.
The country with a relative abundance of human capital conducts relatively more R&D in the steady state than its partner. This country acquires the know-how to produce a relatively wider range of innovative goods. High technology comprises a large share of the national economy in the human-capital rich country and real output growth is faster. This prediction would seem to accord weakly with empirical observation of Korean economy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.