This study tried to suggest the most efficient learning rate for accurate and efficient automatic diagnosis of medical images for chest X-ray pneumonia images using deep learning. After setting the learning rates to 0.1, 0.01, 0.001, and 0.0001 in the Inception V3 deep learning model, respectively, deep learning modeling was performed three times. And the average accuracy and loss function value of verification modeling, and the metric of test modeling were set as performance evaluation indicators, and the performance was compared and evaluated with the average value of three times of the results obtained as a result of performing deep learning modeling. As a result of performance evaluation for deep learning verification modeling performance evaluation and test modeling metric, modeling with a learning rate of 0.001 showed the highest accuracy and excellent performance. For this reason, in this paper, it is recommended to apply a learning rate of 0.001 when classifying the presence or absence of pneumonia on chest X-ray images using a deep learning model. In addition, it was judged that when deep learning modeling through the application of the learning rate presented in this paper could play an auxiliary role in the classification of the presence or absence of pneumonia on chest X-ray images. In the future, if the study of classification for diagnosis and classification of pneumonia using deep learning continues, the contents of this thesis research can be used as basic data, and furthermore, it is expected that it will be helpful in selecting an efficient learning rate in classifying medical images using artificial intelligence.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.6
/
pp.526-532
/
2023
Falls are fatal accidents that occur more than 420,000 times a year worldwide. Therefore, to study patients with falls, we found the association between extrinsic injury codes and principal diagnosis S-codes of patients with falls, and developed a prediction model to predict extrinsic injury codes based on the data of principal diagnosis S-codes of patients with falls. In this study, we received two years of data from 2020 and 2021 from Institution A, located in Gangneung City, Gangwon Special Self-Governing Province, and extracted only the data from W00 to W19 of the extrinsic injury codes related to falls, and developed a prediction model using W01, W10, W13, and W18 of the extrinsic injury codes of falls, which had enough principal diagnosis S-codes to develop a prediction model. 80% of the data were categorized as training data and 20% as testing data. The model was developed using MLP (Multi-Layer Perceptron) with 6 variables (gender, age, principal diagnosis S-code, surgery, hospitalization, and alcohol consumption) in the input layer, 2 hidden layers with 64 nodes, and an output layer with 4 nodes for W01, W10, W13, and W18 exogenous damage codes using the softmax activation function. As a result of the training, the first training had an accuracy of 31.2%, but the 30th training had an accuracy of 87.5%, which confirmed the association between the fall extrinsic code and the main diagnosis S code of the fall patient.
Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.
Lim, Chang-Seon;Cho, A Ra;Hur, Yera;Choi, Seong-Youl
Journal of radiological science and technology
/
v.40
no.3
/
pp.469-484
/
2017
Radiological Technologists deals with the life of a person which means professional competency is essential for the job. Nevertheless, there have been no studies in Korea that identified the job competence of radiologists. In order to define the core job competencies of Korean radiologists and to present the factor models, 147 questionnaires on job competency of radiology were analyzed using 'PASW Statistics Version 18.0' and 'AMOS Version 18.0'. The valid model consisted of five core job competencies ('Patient management', 'Health and safety', 'Operation of equipment', 'Procedures and management') and 17 sub - competencies. As a result of the factor analysis, the RMSEA value was 0.1 and the CFI, and TLI values were close to 0.9 in the measurement model of the five core job competencies. The validity analysis showed that the mean variance extraction was 0.5 or more and the conceptual reliability value was 0.7 or more, And there was a high correlation between subordinate competencies included in each subordinate competencies. The results of this study are expected to provide specific information necessary for the training and management of human resources centered on competence by clearly showing the job competence required for radiologists in Korea's health environment.
The purpose of this study is to propose a convolutional neural network model that can classify normal and abnormal(cardiomegaly) in chest X-ray images. The training data and test data used in this paper were used by acquiring chest X-ray images of patients diagnosed with normal and abnormal(cardiomegaly). Using the proposed deep learning model, we classified normal and abnormal(cardiomegaly) images and verified the classification performance. When using the proposed model, the classification accuracy of normal and abnormal(cardiomegaly) was 99.88%. Validation of classification performance using normal images as test data showed 95%, 100%, 90%, and 96% in accuracy, precision, recall, and F1 score. Validation of classification performance using abnormal(cardiomegaly) images as test data showed 95%, 92%, 100%, and 96% in accuracy, precision, recall, and F1 score. Our classification results show that the proposed convolutional neural network model shows very good performance in feature extraction and classification of chest X-ray images. The convolutional neural network model proposed in this paper is expected to show useful results for disease classification of chest X-ray images, and further study of CNN models are needed focusing on the features of medical images.
Kim, Ga Young;Jeong, Su Hwan;Eom, Soo Hyeon;Jang, Seong Won;Lee, So Yeon;Choi, Sangil
KIPS Transactions on Computer and Communication Systems
/
v.10
no.9
/
pp.251-260
/
2021
Gait analysis is one of the research fields for obtaining various information related to gait by analyzing human ambulation. It has been studied for a long time not only in the medical field but also in various academic areas such as mechanical engineering, electronic engineering, and computer engineering. Efforts have been made to determine whether there is a problem with gait through gait analysis. In this paper, as a pre-step to find out gait abnormalities, it is investigated whether it is possible to differentiate whether experiment participants wear elderly simulation suit or not by applying gait data to machine learning models for the same person. For a total of 45 participants, each gait data was collected before and after wearing the simulation suit, and a total of six machine learning models were used to learn the collected data. As a result of using an artificial neural network model to distinguish whether or not the participants wear the suit, it showed 99% accuracy. What this study suggests is that we explored the possibility of judging the presence or absence of abnormality in gait by using machine learning.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.4
/
pp.132-144
/
2018
3D Geo-spatial information models have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, in surveying and geo-spatial field, the demand for high quality 3D geospatial information and indoor spatial information is so highly increasing. However, it is so difficult to provide a low-cost and high efficiency service to the field which demand the highest quality of 3D model, because pre-constructed spatial data are composed of different formats and storage structures according to the application purpose of each institutes. In fact, the techniques to construct a high applicable 3D geo-spatial model is very expensive to collect and analyze geo-spatial data, but most demanders of 3D geo-spatial model never want to pay the high-cost to that. This study, therefore, suggest the effective way to construct 3D geo-spatial model with low-cost of construction. In general, the effective way to reduce the cost of constructing 3D geo-spatial model as presented in previous studies is to combine the raw data obtained from point cloud observatory and UAV imagery, however this method has some limitation of usage from difficulties to approve the use of raw data because of those have been managed separately by various institutes. To solve this problem, we developed the linking & management system for unifying a high-Resolution raw geo-spatial data based on the point cloud DB and apply this system to extract the basic database from 3D geo-spatial mode for the road database registration. As a result of this study, it can be provided six contents of main entries for road registration by applying the developed system based on the point cloud DB.
In this study, we intend to develop a granulation tissue formation model. As a pilot experiment, a contrast agent was injected into the pylorus in 3 rats, the normal pylorus lumen size was confirmed, and a stent was placed. Stent migration was confirmed in to the duodenum within 1 week. In this experiment, stent was sutured and fixed to induce granulation tissue formation after gastrostomy under a fluoroscopic guidance. Twenty rats were divided into Healthy Group / Gastrostomy Group. After anesthesia of the Gastrostomy Group, an abdominal incision was performed, and gastrostomy was performed under a fluoroscopic guidance, and a stent was placed into the pylorus. In order to prevent stent migration due to peristalsis, suture between the pylorus and the proximal end of the stent was performed. Postoperative behavior and weight changes were monitored daily. Four weeks after surgery, gastrointestinal fluoroscopy imaging was performed and rats were sacrifices. To evaluate the degree of granulation formation, the stent was sectioned transversely. Gastrostomy group was statistically significantly higher than Healthy Group in granulation area ratio (all p<.001). In conclusion, it is considered that the level of tissue overgrowth formation for preclinical evaluation of the pylorus stricture model through gastrostomy is appropriate as a research evaluation tool.
The purposes of this study were to investigate the major determinants influencing on health promoting behaviors(HPB) of the elderly living in Seoul. The conceptual framework of the study was Pender's health promoting model and the ecological perspectives. The study was conducted with 495 elderly persons whom 60 years old. For the analysis of data, descriptive statistics and hierarchical regression were used for the statistical analysis with SPSS program. The results were as following: 1) The mean score of the HPB was 3.11(SD=0.41). 2) Hierarchical regression analysis found that ModelIV accounted for 55.7% of the variance in HPB. 3) The Major determinants on HPB among the elderly persons were prior related perceived benefits of action, social support, perceived self-efficacy, community environment, perceived health status, education, and age. In conclusions, first, we should develop to various levels of educational and supportive programs for the HPB among the elderly persons. Second, we should examine more with environment, the accessibility to senior welfare agencies. Third, we should be organized the self-help groups for the elderly persons to improve health promoting behaviors. Fourth, the government should established more secure environment for the HPB, and find better solutions that are provided by various social welfare agencies connected with the coordination of the services in the local communities. Finally, we should develop professional education training programs of the HPB for the practitioners in the field of Gerontological Social Work.
Journal of Family Resource Management and Policy Review
/
v.16
no.2
/
pp.123-143
/
2012
This study, based on a health belief model, examines how baby boomers perceive health and how they are financially preparing for future medical expenses. In addition, the study analyzes which factors influence baby boomers' preparation behaviors for future medical expenses and their perceived sufficiency of the preparation for medical expenses. Through such activities, this study examines baby boomers' current preparation status for future medical expenses, and based on this outcome, will turn the attention of individuals and society toward becoming more concerned with health and increasing health expectancy. For this study, an online survey was conducted targeted at men and women who were born between 1955 and 1963 and live nationwide, and its resultant data were collected. After conducting a 15-day survey in November 2011, a total of 418 questionnaire responses were used for the final analysis. The major findings of this study and their implications are as follows: First, baby boomers' health beliefs and their perceptions of health identified by subjective health conditions were very positive. Second, while there were some partial differences in the influencing factors, health beliefs and perceived health influenced the sufficiency of future medical expenses in the three groups, which were segmented according to how they prepare for future medical expenses-insurance-based, pension-based, and insufficiently prepared groups. Third, the baby boomers selected the national health insurance as the primary means of preparing for post-retirement medical expenses, and backed it up with private health insurance or the national pension. In addition, when baby boomers' perceived sufficiency of future medical expenses were examined, 57.6% of the respondents expressed that their old-age medical expenses were not sufficient. Fourth, in terms of baby boomers' preparation behaviors for future medical expenses, it was revealed that as one recognizes old-age health more seriously, he/she has a higher chance of using insurance and lower chance of using a pension to prepare for medical expenses. Fifth, regarding baby boomers' sufficiency of preparations for future medical expenses, economic factors such as total assets, the sufficiency of retirement assets, and the number of insurance policies, as well as health perceptions, including health beliefs and subjective health conditions, were important influencing factors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.