Purpose The purpose of this study is to investigate and analyze the external dose rates of
Purpose : The purpose of this study was to evaluate acute childhood seizures, one of the most important causes of emergency room visits, to provide appropriate medical services. Methods : We reviewed the medical records of 433 (4.6%) pediatric patients with acute seizures that visited the emergency room at Masan Samsung hospital from 2004 to 2006. Results : The male to female ratio was 1.4:1 and the mean age was
기존 간호 영역 내 간호는 질적으로, 양적으로 급격히 팽창 확대되어 가고 있다. 많은 나라에서 건강관리체계가 부적절하게 분배되어 있으며 따라서 많은 사람들이 적절한 건강관리를 제공받지 못하고 있어 수준 높은 양질의 건강관리를 전체적으로 확대시키는 것이 시급하다. 혹 건강관리의 혜택을 받는다고 해도 이들 역시 보다 더 양질의 인간적인 간호를 요하고 있는 실정이다. 간호는 또한 간호영역 자체 내에서도 급격히 확대되어가고 있다. 예를들면, 미국같은 선진국가의 건강간호사(Nurse practitioner)는 간호전문직의 새로운 직종으로 건강관리체계에서 독자적인 실무자로 그 두각을 나타내고 있다. 의사의 심한 부족난으로 고심하는 발전도상에 있는 나라들에서는 간호원들에게 전통적인 간호기능 뿐 아니라 건강관리체계에서 보다 많은 역할을 수행하도록 기대하며 일선지방의 건강센터(Health center) 직종에 많은 간호원을 투입하고 있다. 가령 우리 한국정부에서 최근에 시도한 무의촌지역에서 졸업간호원들이 건강관리를 제공할 수 있도록 한 법적 조치는 이러한 구체적인 예라고 할 수 있다. 기존 간호영역내외의 이런 급격한 변화는 Melvin Toffler가 말한 대로 ''미래의 충격''을 초래하게 되었다. 따라서 이러한 역동적인 변화는 간호전문직에 대하여 몇가지 질문을 던져준다. 첫째, 미래사회에서 간호영역의 특성은 무엇인가? 둘째, 이러한 새로운 영역에서 요구되는 간호원을 길러내기 위해 간호교육자는 어떤 역할을 수행해야 하는가? 셋째 내일의 간호원을 양성하는 간호교육자를 준비시키기 위한 실질적이면서도 현실적인 전략은 무엇인가 등이다. 1. 미래사회에서 간호영역의 특성은 무엇인가? 미래의 간호원은 다음에 열거하는 여러가지 요인으로 인하여 지금까지의 것과는 판이한 환경에서 일하게 될 것이다. 1) 건강관리를 제공하는 과정에서 컴퓨터화되고 자동화된 기계 및 기구 등 새로운 기술을 많이 사용할 것이다. 2) 1차건강관리가 대부분 간호원에 의해 제공될 것이다. 3) 내일의 건강관리는 소비자 주축의 것이 될 것이다. 4) 간호영역내에 많은 새로운 전문분야들이 생길 것이다. 5) 미래의 건강관리체계는 사회적인 변화와 이의 요구에 더 민감한 반응을 하게 될 것이다. 6) 건강관리체계의 강조점이 의료진료에서 건강관리로 바뀔 것이다. 7) 건강관리체계에서의 간호원의 역할은 의료적인 진단과 치료계획의 기능에서 크게 탈피하여 병원내외에서 보다 더 독특한 실무형태로 발전될 것이다. 이러한 변화와 더불어 미래 간호영역에서 보다 효과적인 간호를 수행하기 위해 미래 간호원들은 지금까지의 간호원보다 더 광범위하고 깊은 교육과 훈련을 받아야 한다. 보다 발전된 기술환경에서 전인적인 접근을 하기위해 신체과학이나 의학뿐 아니라 행동과학
From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 (