In this paper, we propose a medical image registration technique combining the gradient vector flow and modified conditional entropy. The registration is conducted by the use of a measure based on the entropy of conditional probabilities. To achieve the registration, we first define a modified conditional entropy (MCE) computed from the joint histograms for the area intensities of two given images. In order to combine the spatial information into a traditional registration measure, we use the gradient vector flow field. Then the MCE is computed from the gradient vector flow intensity (GVFI) combining the gradient information and their intensity values of original images. To evaluate the performance of the proposed registration method, we conduct experiments with our method as well as existing method based on the mutual information (MI) criteria. We evaluate the precision of MI- and MCE-based measurements by comparing the registration obtained from MR images and transformed CT images. The experimental results show that the proposed method is faster and more accurate than other optimization methods.
In this study, medical images, which are X-ray image and CT image, are compressed by the adam live coding technique. The medical images may be treated as special ones, because they are different from general images in many respects. The statistical characteristics that medical images only have in transform domain are analyzed, and then the improved quantization method is proposed for medical images. For chest X-ray image and CT head image, the better results are obtained by the improved adaptive coding technique.
Proceedings of the Optical Society of Korea Conference
/
2003.07a
/
pp.76-77
/
2003
Digital Radiograpy & Fluoroscopy(DRF 또는 DR 또는 DF)는 cone beam을 이용하여 인체를 투과한 X선을 영상증배관(Image Intensifying Tube: IIT)을 통하여 가시광선으로 변환시킨 후 영상을 카메라로 보내고, 이곳에서 발생한 영상정보를 디지털로 처리하여 모니터를 통해 눈에 보이는 영상으로 만드는 방법으로 IIT에 기초한 디지털 방사선 촬영술이라고도 한다. DF 방법은 즉시 영상 표시와 진단이 가능하기 때문에 즉시성이 요구되는 심장이나 두복부 등의 순환기 분야에서 DSA(Digital Subtraction Angiography) 장비로 이용되고 있고, 순환기뿐만 아니라 위를 중심으로 한 소화관(식도, 위, 소장, 대장, 직장)의 분야에서 적용 가능하다. (중략)
Kim Tae-Ho;Kim Young-Hee;Jin Kyo-Hong;Ko Bong-Jin;Park Mu-Hun
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.8
/
pp.1407-1413
/
2006
The field of medical images has been digitalized as the development of computer and the digitalization of the medical instruments. As a result it causes a lot of problems such as an illegal copy related to medical images and property right of the medical images. Therefore, digital watermarking is used for discrimination whether the data are modified or not. It is also used to protect both the property right of medical images and the private life of many patients. The proposed theories, the Non-blind and the Blind method, have two problems. One is needed an original image and the other is using a gaussian watermarking. This paper proposes the new Blind Watermarking using binary images in order to easily recognize the results of watermark. This algorism is described that an watermark of a binary image is wavelet-transformed, and then a transformed watermark is inserted in medium-band of frequency domains of original image by the Circular Input method. This method don't have any loss when image didn't have any attack. As a result Watermark can be perfectly extracted by using this algorithm. And Maximam PSNR value is improved 3.35dB. This algorithm will be improved by using gray level image and color image.
Kim, Jihyun;Choi, Jinwook;Ryu, Seungchul;Kim, Donghyun;Sohn, Kwanghoon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.40-43
/
2012
3차원 영상 기술은 방송, 영화, 게임, 의료, 국방 등 다양한 기존 산업들과 융합하며 새로운 패러다임을 형성하고 있으며, 고품질 및 고해상도의 3차원 영상 획득에 대한 필요성이 강조되고 있다. 이에 따라, 최근에는 3차원 입체 영상을 제작 하는 방법 중 하나인 2D-plus-Depth 구조에 대한 연구가 활발히 진행되고 있다. 2D-plus-Depth 구조는 Charge-Coupled Device(CCD) 센서 등을 이용한 일반 카메라와 깊이 카메라를 결합한 형태로써 이 구조로부터 얻은 깊이 영상의 해상도를 상향 변환하기 위해서 Joint Bilateral Upsampling(JBU)[1], 컬러 영상의 정보를 활용한 보간법[2] 등의 방법들이 사용된다. 하지만 이 방법들은 깊이 영상을 높은 배율로 상향 변환할 경우 텍스처가 복사되거나 흐림 및 블록화 현상이 발생하는 문제점이 있다. 본 논문에서는 2D-plus-Depth 구조에서 얻은 고해상도 컬러 영상에서 보간 정보를 구하고 이 정보를 저해상도의 깊이 영상에 적용하여 상향 변환된 가이드 깊이 영상을 제작한다. 이 가이드 깊이 영상을 Bilateral Filtering[8]을 이용함으로써 고품질의 고해상도 깊이 영상을 획득한다. 실험 결과 제안하는 방법으로 해상도를 상향 변환을 할 경우에 기존의 보간법들에 비해 깊이 영상의 특성을 잘 보존함을 확인할 수 있고, 가이드 깊이 영상에 필터링을 처리한 결과가 JBU의 결과보다 향상됨을 확인할 수 있다.
Recently, attempts have been made to convert unstructured text into vectors and to analyze vast amounts of natural language for various purposes. In particular, the demand for analyzing texts in specialized domains is rapidly increasing. Therefore, studies are being conducted to analyze specialized and general-purpose documents simultaneously. To analyze specific terms with general terms, it is necessary to align the embedding space of the specific terms with the embedding space of the general terms. So far, attempts have been made to align the embedding of specific terms into the embedding space of general terms through a transformation matrix or mapping function. However, the linear transformation based on the transformation matrix showed a limitation in that it only works well in a local range. To overcome this limitation, various types of nonlinear vector alignment methods have been recently proposed. We propose a vector alignment model that matches the embedding space of specific terms to the embedding space of general terms through end-to-end learning that simultaneously learns the autoencoder and regression model. As a result of experiments with R&D documents in the "Healthcare" field, we confirmed the proposed methodology showed superior performance in terms of accuracy compared to the traditional model.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.3B
/
pp.275-286
/
2011
As the 21st century paradigm of healthcare service changes from post-therapeutic treatment to disease prevention and management in advance, the M2M-based u-healthcare application service is increasingly important. M2M-based u-healthcare application service uses mobile handsets equipped with sensors to measure vital information, and the medical staff in remote locations can manage the health of the patient or the public in real time. In this paper, IEEE/HL7 translation gateway, utilizing the gateway based on M2M u-healthcare application service structure, which is based on international standards, has been designed and implemented. Specifically, the gateway between ISO/IEEE 11073 standards and ANSI HL7 has been developed. The former defines the protocol for the exchange of information between the agent device and the manger devices for measuring and handling biological signal, and the latter defines the application layer protocol for the exchange of various healthcare information systems. Finally, in order to demonstrate the functionality of the proposed architecture, the M2M-based U-healthcare application service based on IEEE/HL7 translation gateway, utilizing the gateway, has been developed which can measure, collect and process a variety of vital signs such as ECG or SpO2.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.6
/
pp.704-709
/
2006
In this study, we suggest the effective storage structure and management method for XML-based electrocardiography(ECG) data to support the interoperability between medical information systems, and implement the metadata system of ECG data providing the web-based information service. ECG matadata management system include functions for storing and managing as well as reporting PDF service of ECG data. We analyzed a characteristics of the data and access patterns for XML-based ECG and then used the non-partitioning storing method and indexing the extracted metadata from the HL7 aECC for supporting the quick search. We, using the template mechanism, converts the XML-based results data into various formats in order to provide services of the ECG reporting.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.731-736
/
2023
Recently, the medical field has been applying mandatory Electronic Medical Records (EMRs) and Electronic Health Records (EHRs) systems that computerize and manage medical records, and distributing them throughout the entire medical industry to utilize patients' past medical records for additional medical procedures. However, the conversations between medical professionals and patients that occur during general medical consultations and counseling sessions are not separately recorded or stored, so additional important patient information cannot be efficiently utilized. Therefore, we propose an electronic medical record system that uses speech recognition and natural language processing deep learning to store conversations between medical professionals and patients in text form, automatically extracts and summarizes important medical consultation information, and generates electronic medical records. The system acquires text information through the recognition process of medical professionals and patients' medical consultation content. The acquired text is then divided into multiple sentences, and the importance of multiple keywords included in the generated sentences is calculated. Based on the calculated importance, the system ranks multiple sentences and summarizes them to create the final electronic medical record data. The proposed system's performance is verified to be excellent through quantitative analysis.
KIPS Transactions on Software and Data Engineering
/
v.9
no.10
/
pp.309-316
/
2020
We predict the mortality of the elderly patients visiting the emergency department who are over 65 years old using Feed Forward Neural Network (FFNN) and Convolutional Neural Network (CNN) respectively. Medical data consist of 99 features including basic information such as sex, age, temperature, and heart rate as well as past history, various blood tests and culture tests, and etc. Among these, we used random forest to select features by measuring the importance of features in the prediction of mortality. As a result, using the top 80 features with high importance is best in the mortality prediction. The performance of the FFNN and CNN is compared by using the selected features for training each neural network. To train CNN with images, we convert medical data to fixed size images. We acquire better results with CNN than with FFNN. With CNN for mortality prediction, F1 score and the AUC for test data are 56.9 and 92.1 respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.