Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.410-413
/
2010
병원정보시스템의 전세계적인 보급과 데이터웨어하우스의 도입으로 인해서 병원내의 의료데이터가 기하 급수적인 증가추세를 보이고 있다. 환자에 대한 임상적인 특징을 다수 포함하고 있는 의료데이터는 유용한 임상지식의 보고로서 그 가치가 매우 유용하다. 따라서 데이터에 숨겨진 지식을 발견하여 구조화시킴으로써 새로운 지식을 창조하는 데이터마이닝은 임상부분에 적합한 기술이라 말할 수 있다. 본 연구에서는 급성염증을 가진 환자들의 의료데이터를 기반으로 특징을 추출하고, 추출된 특징을 바탕으로 병명을 판단하기 위한 학습을 수행한다. 학습 방법은 클러스터링을 이용한 나이브 베이지안으로 진행한다. 기존의 나이브 베이지안 학습은 대량의 데이터를 처리하는데 효과적이며 성능 또한 우수하지만, 속성별 독립을 가정하기 때문에 의료데이터를 분석에는 잘 사용되지 않는다. 따라서 높은 신뢰도를 구현하기 위해 나이브 베이지안 학습 전에 클러스터링을 선행하여, 기존 데이터에 클러스터링 클래스를 추가한다. 이를 통해 급성염증의 증상을 보이는 환자데이터를 바탕으로 자동적으로 방광염과 결석으로 인한 신장염을 효과적으로 진단해낸다.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.193-196
/
2010
정보화 시대를 거치면서 모든 산업분야에서 대량의 데이터가 생성되고 관리되고 있다. 최근에는 비즈니스 환경의 변화로 인하여 의사결정을 지원할 수 있는 고급 정보에 대한 필요성이 대두되었으며 IT 기술의 발전과 더불어 데이터마이닝에 대한 많은 연구가 활발히 이루어졌다. 데이터마이닝은 금융, 정부, 제조, 유통 등 다양한 분야에서 활용되고 있다. 한편 의료데이터는 다른 산업분야의 데이터와 구별되는 특징이 있는데, 데이터의 이질성과 복잡성, 부정확성과 오류가능성, 불완전성과 윤리 및 법적인 문제, 개인정보보호, 특징 선택의 제한, 모델의 투명성과 설명력에 대한 높은 요구도 등이 그것이다. 이와 같은 이유로 의료데이터에 대한 접근은 제한적일 수 밖에 없다. 그럼에도 병원 전산화를 통해 발생하는 의료데이터의 양은 기하급수적으로 증가하고 있으며, 임상정보를 포함하는 의료데이터는 데이터 자체로도 가치가 매우 크다. 이에 본 논문은 국내 제 3차 의료기관의 2년간 내원환자에 대한 진단데이터를 사용하여 데이터마이닝의 연관법칙을 이용, 상병간의 관계를 연구하고자 하였다. 이를 통해 잠재고객에게는 객관화된 의료지표를 제공하고, 의료기관은 예측 가능한 정보를 종합의료시스템에 활용하여 고객만족도를 높이는 효과를 볼 수 있을 것으로 사료된다.
The purpose of this study is to find out specific measures that can help the management strategy of patient-centered medical institutions by conducting research on patient experience surveys of convergence outpatient medical services using data mining techniques according to changes in patient-centered medical culture. Using the raw data of the 2018 Medical Service Experience Survey, 8,843 people over the age of 15 who had patient experience in outpatient medical services were analyzed. Decision tree analysis was performed. The determinants of satisfaction with outpatient medical services patient experience were the doctor's area and patient's rights protection area, and the determinants of intention to recommend outpatient medical services were the doctor's area and facilities comfort. Women evaluated the experience positively in overall satisfaction as compared to men, and those over the age of 60 positively evaluated the overall satisfaction and intention to recommend. It is significant that the outpatient experience decision-making model is presented, and that the doctor's area, patient's rights protection area, and facility comfort are important factors. Long-term research on the 'Medical Service Experience Survey' is needed, and research on the inpatient medical service experience is needed.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.47-50
/
2004
본 논문은 대량의 데이터를 처리하는 전염병에 관한 역학조사에 대한 과정을 KDD(Knowledge Discovery in Database)와 데이터마이닝 기법을 이용해서 의료 전문인들의 지식을 데이터베이스화하여 데이터 선정, 정제, 보강, 예측과 빠른 데이터 검출을 하도록 하였다. 그리고 각 바이러스의 동향은 데이터마이닝을 활용하므로 일부분만의 데이터를 산출하지 않고 전체적인 동향을 산출, 예측하도록 한다.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.43-46
/
2001
정보화를 통한 업무의 효율성 제고에 대한 인식이 폭넓게 확산돼 있다. 의료분야에서도 비교적 단순한 원무관리 시스템이나 환자의 증상이나 각종 자료 등을 기록하고 의료진간의 공유를 가능하게 하는 전자의료기록 관리시스템의 구축이 필요하다. 또한 이들 시스템을 통하여 획득한 환자의 자료를 분석하여 의료진의 환자질병진단을 지원하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 의료자료 분석에 요구되는 기법을 제시하며, 획득한 환자의 자료를 데이터마이닝 기법인 신경망 모델을 적용하여 결과를 분석한다.
Changes in business environment caused by globalization of the world economy and the beginning of the knowledge society forced hospitals to equip with tools for the enhanced competitiveness. In other words, hospitals must aim three targets such as acquisition of advanced medical skills and equipments, improvement of service level for patients, and achievement of superior managerial performance simultaneously. This study has been done to suggest a way to reduce the possibility of hospital bill claim reduction as an alternative for the achievement of superior managerial performance. If the reduction rate of hospital bill claim is high, it will put negative impact on the hospital's revenue stream and hospital's reliability. Thus, if they want to stay competitive, hospitals need to device ways to cut the reduction rate as much as possible. In this study, a prototype system has been developed and implemented to check the possibility to cut the reduction rate through deep analysis of causes of reduction. The prototype first developed utilizing data mining techniques and the relation rules algorithm. Then the prototype was tested its performance using the D hospital's live data.
The purpose of this study is to develop a convergence inpatient medical service patient experience management model(IMSPEMM) that can help in the management strategy of a medical institution to create a patient-centered medical culture. Using the original data from the 2018 Medical Service Experience Survey, 593 people with medical services inpatient(MSI) over the age of 15 were analyzed. By using the decision tree model, we developed a prediction model for overall satisfaction(OS) with the inpatient medical service experience(IMSE) and the intention to recommend patient experience(RI), and were classified into 4 and 7 types. The accuracy of the model was 68.9% and 78.3%. The OS level of IMSE was the nurse area and the hospital room noise management area, and the RI decision factor was the nurse area. It is significant that the IMSPEMM for MSI was presented and confirmed that the nurse area and the noise management area of the hospital room are important factors for the inpatient experience. It is considered that further research is needed to generalize the IMSPEMM.
본 연구는 데이터마이닝 기법을 이용하여 건강보험청구료에 있어서 이상정도가 심한 요양기관을 탐지하고, 실제 의료영역에 적용하기 위한 시스템 개발을 목적으로 한다. 현재 건강보험 심사평가원의 이상탐지시스템은 평가대상이 되는 항목을 개별적으로 평가하고, 탐지된 기관의 선정 이유에 대한 근거제시가 부족한 단점을 가지고 있다. 따라서 본 연구에서는 항목을 종합적으로 평가할 수 있는 정량적 지표를 설계하고, 항목들의 상대적 중요도를 파악할 수 있도록 항목들에 대한 가중치 부여한다. 또한 지표에서 얻어진 값으로 등급을 구분하고, 의사결정나무기법(decision tree)를 이용하여 해석력을 높이는 방법을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.757-759
/
2005
데이터마이닝을 이용한 데이터베이스 마케팅 전락 수립에 대한 않은 연구가 있었고 현재 의료업계에서도 관련 연구가 활발히 이루어지고 있다. 그러나 이는 규모가 큰 병원에만 국한되어 있고 산재해 있는 중소병원 및 본 연구의 대상인 한방분야의 경우 매우 미비한 실정이다. 이에 본 논문에서는 한방분야에서의 효과적인 데이터베이스 마케팅을 위하여 실제 한방병원의 데이터를 이용하여, 실증적으로 문제해결을 할 수 있는 방안을 제시한다. 즉 데이터의 특성 파악 및 전처리 과정 등을 통한 데이터마이닝 기법을 통하여 재검진을 결정하는 요인을 찾아내고, 군집별 특성을 분석하여 이를 데이터베이스 마케팅에 적용함으로써 데이터베이스를 효과적으로 마케팅에 활용할 수 있는 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.