• 제목/요약/키워드: 의견 스팸

검색결과 7건 처리시간 0.023초

의미 프레임 자질 기반 의견 스팸 분석 (Deep Semantic Feature based Deceptive Opinion Spam Analysis)

  • 김성순;장혁윤;이성운;강재우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.1001-1004
    • /
    • 2015
  • 소설미디어의 급증과 함께 온라인 리뷰의 의존성이 급증하는 가운데 사용자의 올바른 의사결정을 저해하는 기만적 의견 스팸 이슈가 새롭게 주목받고 있다. 기존의 의견 스팸 연구는 실제 리뷰와 의견 스팸 간의 차이를 어휘, 품사 또는 감정단어와 같은 표면적 자질을 통해 설명하였으나 그들간의 의미적 연결관계는 고려하지 않았다. 본 논문에서는 1) 의미적 프레임 기반의 텍스트 분석기법을 제안하고, 이를 바탕으로 2) 의견 스팸과 실제 리뷰간의 의미적 차이가 있음을 규명하며 3) 새로운 의미적 프레임 자질을 사용하여 기존의 의견 스팸 분류 성능을 향상시킬 수 있음을 보인다.

크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가 (A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance)

  • 이성운;김성순;박동현;강재우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.338-343
    • /
    • 2016
  • 웹이 정보 교환의 주된 수단으로 사용되면서, 온라인 리뷰의 중요도가 증가하는 동시에 사용자의 올바른 의사결정을 저해하는 의견 스팸 이슈가 부각되고 있으며, 관련 연구가 활발하게 진행되고 있다. 하지만 분석 및 학습에 필요한 기준 데이터셋의 부족함과 한계점들은 관련 연구의 발전을 더디게 하고 있다. 본 논문에서는 사실 리뷰를 모사한 새로운 형태의 Paraphrased Opinion Spam(POS) 데이터셋을 소개한다. 우리는 실제 스패머들이 스팸을 작성할 때 실제 리뷰를 참고한다는 경향에 착안하여, 실제 리뷰어들이 작성한 리뷰를 의역하는 과정을 통하여 본문에 포함되어 있는 사실 정보와 경험을 담은 스팸 데이터 셋을 생성하였다. 실험 결과, 새롭게 생성된 POS 데이터셋이 언어학적으로 실제 리뷰들과 유사하여 스팸 분류 모델을 이용하여 분류 시 기존의 데이터셋들보다 더 분류하기 힘들다는 것을 발견했다. 또한 데이터의 학습량에 따라서 스팸 리뷰의 분류 정확도가 비례적으로 증가하는 것을 확인함으로써, 데이터의 양이 스팸 분류 모델 성능에 중요한 요소로 작용한다는 것을 확인할 수 있었다.

단일 문서의 특징 분석을 이용한 스팸 분류 방법 (Spam Classification by Analyzing Characteristics of a Single Web Document)

  • 심상권;이수원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.845-848
    • /
    • 2014
  • 블로그는 인터넷에서 개인의 정보나 의견을 표출하고 커뮤니티를 형성하는데 사용되는 중요한 수단이나, 광고 유치, 페이지 순위 올리기, 쓰레기 데이터 생성 등 다양한 목적을 가진 스팸블로그가 생성되어 악용되기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 웹 문서에서 나타나는 특징들을 이용한 스팸 탐지 기법을 제안한다. 먼저 블로그 본문의 길이, 태그의 비율, 태그 수, 이미지 수, 랭크의 수 등 하나의 웹 문서에서 추출할 수 있는 특징을 기반으로 각 문서에 대한 특징 벡터를 생성하고 기계학습을 통해 모델을 생성하여 스팸 블로그를 판별한다. 제안 방법의 성능 평가를 위해 블로그 포스트 데이터를 사용하여 제안방법과 기존의 스팸 분류 연구를 비교 실험을 진행하였다. Bayesian 필터링 기법을 사용하는 기존연구와 비교 실험 결과, 제안방법이 더 좋은 정확도를 가지면서 특징 추출 속도 및 메모리 사용 효율성을 보였다.

텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안 (Detecting Spam Data for Securing the Reliability of Text Analysis)

  • 현윤진;김남규
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.493-504
    • /
    • 2017
  • 최근 뉴스, 블로그, 소셜미디어 등을 통해 방대한 양의 비정형 텍스트 데이터가 쏟아져 나오고 있다. 이러한 비정형 텍스트 데이터는 풍부한 정보 및 의견을 거의 실시간으로 반영하고 있다는 측면에서 그 활용도가 매우 높아, 학계는 물론 산업계에서도 분석 수요가 증가하고 있다. 하지만 텍스트 데이터의 유용성이 증가함과 동시에 이러한 텍스트 데이터를 왜곡하여 특정 목적을 달성하려는 시도도 늘어나고 있다. 이러한 스팸성 텍스트 데이터의 증가는 방대한 정보 가운데 필요한 정보를 획득하는 일을 더욱 어렵게 만드는 것은 물론, 정보 자체 및 정보 제공 매체에 대한 신뢰도를 떨어뜨리는 현상을 초래하게 된다. 따라서 원본 데이터로부터 스팸성 데이터를 식별하여 제거함으로써, 정보의 신뢰성 및 분석 결과의 품질을 제고하기 위한 노력이 반드시 필요하다. 이러한 목적으로 스팸을 식별하기 위한 연구가 오피니언 스팸 탐지, 스팸 이메일 검출, 웹 스팸 탐지 등의 분야에서 매우 활발하게 수행되었다. 본 연구에서는 스팸 식별을 위한 기존의 연구 동향을 자세히 소개하고, 블로그 정보의 신뢰성 향상을 위한 방안 중 하나로 블로그의 스팸 태그를 식별하기 위한 방안을 제안한다.

인터넷 게시물의 댓글 분석 및 시각화 (Analysis and Visualization for Comment Messages of Internet Posts)

  • 이윤정;지정훈;우균;조환규
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.45-56
    • /
    • 2009
  • 오늘날 인터넷 사용자들은 블로그나 뉴스, 인터넷 게시판 등의 매체에서 댓글을 통해 다른 사람의 의견을 살피고 자신의 의견을 나타내고 있다. 그러나 현재 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 사용자가 원하는 내용의 댓글을 검색하거나 살펴보는 것은 힘든 일이다. 또한 댓글 사용자가 증가함에 따라 스팸 댓글이나 악플 등이 사회 문제가 되기도 한다. 본 논문에서는 다음 아고라(Daum AGORA) 웹 블로그의 게시글과 댓글을 통계적으로 분석하고 유사도를 기반으로 클러스터링하는 시스템을 제안한다. 본 시스템은 클러스터링 결과를 시각화하여 간단한 스크린 뷰(screen view)로 보여준다. 또한, 본 시스템은 생물정보학에서 잘 알려진 정렬 기법인 Needleman-Wunsch 알고리즘을 이용해 스팸 댓글을 필터링한다.

오피니언 마이닝을 이용한 스팸 필터링 (Spam Filtering using Opinion Mining)

  • 오진수;유준석;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.745-746
    • /
    • 2009
  • 오늘날 사람들의 의견을 제시하는 공간은 폐쇄적인 인쇄물이나 수동적인 답변 수준을 벗어나 무한의 공간을 가지는 웹에서 이루어지고 있다. 불특정 다수를 대상으로 하며 정형화된 틀을 없는, 더욱 유용한 의견을 많이 얻을 수 있는 특징을 가졌기 때문에, 이를 위해 오피니언 마이닝에 대한 연구가 활발히 진행되고 있다. 기본적으로 오피니언 마이닝은 해당 분야에 대한 정확한 정보를 찾는 것을 목적으로 하지만, 그러한 정보를 제외한 나머지 부분에 대해서도 충분히 유용하게 사용할 수 있다. 본 논문에서는 그 나머지 부분을 이용하여 무분별하게 등록되고 있는 스팸성 댓글을 효과적으로 필터링 할 수 있는 방법을 제안한다.

LSA 유사도 비교를 통한 트랙백 스팸 탐지 (Trackback Spam Detection using Similarity Analysis by LSA)

  • 전혁수;김태환;최중민
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.339-344
    • /
    • 2010
  • 오늘날 인터넷 사용자들은 블로그나 뉴스 등의 매체에서 트랙백을 사용해 자신의 의견을 보다 자유롭게 나타낸다. 그러나 이러한 자유로움을 악용해 트랙백 스팸을 유발하여 네트워크의 자원을 낭비하고 방문자들에게 잘못된 정보를 전달해 해당 포스트의 신뢰를 떨어뜨린다. 트랙백 스팸은 유명한 포스트와 연계하여 자신의 포스트로 사용자들을 유도하는 특징을 가지기 때문에 일반적인 웹 스팸을 탐지하는 기술을 적용하기 어렵다. 따라서 본 논문에서는 자신이 작성한 글이 다른 사람의 글과 관련이 있다고 생각하여 다른사람의 글에 자신의 글을 링크시키는 트랙백의 특성을 이용하여 원본 페이지와 트랙백 페이지 그리고 트랙백 페이지의 아웃링크 내용상의 유사도와 동시 출현(co-occurrence) 정보를 이용하여 트랙백 스팸을 처리하고자 한다.

  • PDF