• Title/Summary/Keyword: 응회암 변질대

Search Result 20, Processing Time 0.026 seconds

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF

Numerical sensitivity analysis for the reinforcement effect of a curvature of a tunnel floor on soft grounds (연약지반에 위치한 터널 바닥부 곡률의 보강효과에 대한 수치해석적 민감도 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.61-76
    • /
    • 2021
  • As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

Tafoni Patterns on Tuff Slopes in Gogulsa Temple, Gyeongju and Its Microstructural Properties (경주 골굴사 응회암 사면의 타포니 분포 특성과 미세구조)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.339-350
    • /
    • 2022
  • There are a variety of types in tafoni formed in Miocene tuff from Golgulsa, Gyeongju. Tuff bearing tafoni was quite weathered, composed of quartz, feldspars, micas, vermiculite, chlorite, smectite, and analcite. In the early stage of the tafoni development, tafoni preferentially formed from cavities where volcanic breccias were removed or from microcavities where microcrystals were chemically altered. Small tafoni grew into large one by merging each other. The orientation of tafoni is inversely arranged to slopes, with slight inclination toward the inner cavity. Height, width, and depth of tafoni are closely interrelated: the correlation coefficients are 0.839 (width-height), 0.900 (width-depth), and 0.856 (height-depth), respectively. Removal of walls between tafoni resulted in lenticular or crescent forms, and small tafoni laterally combined to large tafoni. Large tafoni is weak because of high porosity and low strength compared to normal slope. Therefore, systematic monitoring for slope strength, pore proportion and volume, and growth of cavity needs to secure the slope stability where tafoni in Golgulsa is widespread.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Gusi Mine, Southern Korea (전남 해남지역 구시광상의 화산활동에 수반된 열수변질작용 및 생성환경)

  • Moon, Hi-Soo;Roh, Yul;Kim, In-Joon;Song, Yungoo;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • Gusi pyrophyllite deposit is located in the Haenam volcanic field in the southwestern part of the Korea Peninsula. This area is known for the occurrences of pyrophyllite, alunite and dickite. This volcanic field is composed of andesite, rhyolite and pyroclastic rocks of late Cretaceous age The pyroclastic rocks are hydrothermally altered to pyrophyllite and kaolin minerals forming the Gusi deposits. The hydrothermally altered rock can be classified into the following zones on the basis of their mineral assemblages: quartz, pyrophyllite, dickite and illite-smectite zones, from the centre to the margins of the alteration mass. Such mineral assemblages indicate that the country rocks, most of which are the lower Jagguri Tuff, were altered by strongly acidic hydrothermal solutions with high aqueous silica and potassium activity and that the formation temperature of pyrophyllite is higher than $265^{\circ}C$. The mechanism of the hydrothermal alteration is considered to be related to felsic magmatism.

  • PDF

Geological Occurrence and Mineralogy of Pyrophyllite Deposits in the Jinhae Area (진해 납석광상의 산상과 광물학적 특성)

  • Kwack, Kyo-Won;Hwang, Jin-Yeon;Oh, Ji-Ho;Yoon, Keun-Taek;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.163-176
    • /
    • 2009
  • The pyrophyllite deposits located in Jinhae area have been studied through field observations and laboratory works including the X-ray diffraction (XRD), X-ray fluorescence (XRF), Electron probe microanalyzer (EPMA) and Inductively Coupled Plasma (ICP). The pyrophyllite deposits consist of mainly illite, dickite, pyrophyllite, diaspore, chlorite, pyrite and copiapite. According to the mineral assemblages, geological occurrences and alteration modes, the altered rocks can be classified into four types: Type A; quartz with silicifictaion, Type B; quartz + illite with illitization, Type C; quartz + dickite + illite with kaolin alteration, Type D; pyrophyllite + illite + dickite + diaspore with pyrophyllite alteraion. Rocks in Type A, which is generated by silicifictaion, have high $SiO_2$ contents more than 90 wt% and distinctive equigranular textures with microcrtstalline quartz. The pyrophyllites from the study area belong to 2M polytype. The host rocks of the pyrophyllite ore in this mine are rhyolitic rock, andecitic tuff and volcanic breccia. The alteration products seem to be controlled by the different lithology of the host rocks. The hydrothermal solution formed the deposits would be inferred to the acidic and have relatively high ionic activity of hydrogen and silica judging from alteration mineral assemblage. Pyrophyllite alteraion zone is generated by highest temperature condition of all alteration zone.

Variation of Gold Content in Rocks and Minerals from the Seongsan and Ogmaesan Clay Deposits in the Haenam Area, Korea (해남지역 성산 및 옥매산 점토광산에서와 금함량 변화)

  • Yoon, Chung-Han
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.571-577
    • /
    • 1995
  • Several acid-sulfate clay deposits associated with silicic magmas occur in the Haenam area of the southwestern part of Korea. Geology of the studied area consists of tuffs, granitic rocks, quartz porphyry, rhyolite, andesite and sedimentary rocks. The granitic rocks and quartz porphyry intruded tuffs and sedimentary rocks. The rhyolite and tuffs around the mines have undergone hydrothermally weak or strong alteration. Gold contents with major and trace elements have been determined for a total of sixty-seven specimens of fresh igneous rocks, wall rocks and minerals such as dickite and alunite by graphite furnace atomic absorption spectrometer and inductively coupled plasma. Gold is enriched in the alunite vein and the silicified zone, but is depleted in dickites and hydrothermally altered rocks with dickite of the Seongsan deposit. Gold is especially concentrated near the faults or conjunction area of two faults. High content of gold is shown in the mineral assemblages of alunitequartz- pyrite in the alunite vein and silicic zone of the Seongsan deposit compared with that of minerals and rocks from another deposits distributed in the studied area. Gold content in tuffs and dickites with pyrite is generally low. Gold content in silicified tuff tends to show positive correlations with content of As, Hg and Sb. Variation trends of Cd, Hg and Sb are similar to those of gold content. From the result of gold content variations, gold may be transported and concentrated by mineralizing solutions ascending along the cracks like fault. Therefore, it is important to survey alunite vein and silicified zone at the conjunction of faults, and to analyze pathfinder elements such as As, Hg and Sb for geological and geochemical exploration of gold in the studied deposits.

  • PDF

Hydrothermal Alteration and Engineering Characteristics in the Bokan Tunnel Area passing through the Yangsan Fault (양산단층을 통과하는 복안터널구간의 열수변질작용과 공학적 특성)

  • Lee, Chang-Sup;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The study area is a tunnelling section passing through the Yangsan Fault zone. Kyungbu express highway and national road 35 are located above the tunnel. Previous study showed that fault gouge and fault breccia were widely distributed in the tunnelling section with a maximum width of 100 m. From the present study, it is found that sedimentary rocks consisting mainly of shale are distributed at the eastern block of the Yangsan Fault and these rocks are not subject to mechanical fracturing and hydrothermal alteration. On the other hand, dacitic tuff distributed at the western block of the Yangsan Fault is largely affected by mechanical fracturing and hydrothermal alteration. The large fault zone of $50{\sim}130m$ width was formed by complex processes of mechanical fracturing and hydrothermal alterations such as chloritization, sericitization, and kaolinization. Based on the characteristics of mechanical fracturing and hydrothermal alterations, the Yangsan fault zone in the study area is geotechnically classified as four zones: unaltered zone, altered zone, altered fractured zone, and fault gouge zone. These zones show different degrees and aspects in mechanical fracturing and hydrothermal alterations, resulting in different engineering properties.

Revaluation of Ore Deposits within the Yeongam District, Cheollanamdo-Province: The Eunjeok and Sangeun Mines (전남 영암지역 광상 재평가: 은적.상은 광산를 중심으로)

  • Heo, Chul-Ho;Park, Sung-Won;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.73-84
    • /
    • 2010
  • Gold and silver deposits within the Eunjeok and Sangeun mines are located in Yeongam district, Cheollanamdo-province. They are composed of vein ore bodies infilling the fractures of Cretaceous rhyolitic tuff. The Eunjeok mine have three gold and silver bearing hydrothermal veins which is infilling the fracture of rhyolitic tuff. Major ore minerals within the Eunjeok and Sangeun mines are arsenopyrite, pyrite, chalcopyrite, sphalerite and galena and minor ores are electrum, native silver and argentite. Sericitization is dominant in alteration zone and chloritization and dickitization is minor. Quartz veins in the Eunjeok and Sangeun mine have the similar paragenesis and vein textures such like breccia, crustiform, comb and vuggy morphology indicating the formation of typical epithermal environment. In order to carry out the preliminary feasibility study of mine according to the commodity and elucidate the occurrence features of mineral resources from Eunjeok and Sangeun mine, common commodity (Pb, Zn, Cu, Fe, Mo, W, Au and U), and industrial commodity (In, Re, Ga, Ge, Se, Te, Y, Eu and Sm) for 17 ore specimen were analyzed. It is tentatively thought that there is no exploitable mine for iron, lead, zinc, copper, tungsten and uranium based on the preliminary result. If the reserves are secured through the detailed prospecting in case of molybdenum and silver, it is tentatively thought that there will be exploitable deposits depending on international metal price. If we assume the vein width from 0.25 m to 2 m including alteration zone with the gold grade of 80g/t, it is inferred that the resources amount of the Eunjeok-Sangeun mines range from 6.5 to 65ton. However, as the vein structure of the Eunjeok and Sangeun mines is developed together with alteration zone, it should be estimated to include potential alteration zone in order to yield the average grade. It is needed to carry out more exploration in the near future because the reserves can be flexibly estimated according to the change of average grade considering the alteration zone.

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru (페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul;Acosta, Jorge
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

Chemical Weathering of Glacial Debris of the Barton Peninsula of King George Island, South Shetland Islands, Antarctica: Microtextural Evidences (남극 사우스셰틀란드 킹죠지섬 바톤반도 빙하쇄설물의 화학적 풍화작용: 미조직학적 증거)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • Diverse microtextures and secondary minerals formed by chemical weathering were observed in the glacial debris of King George Island. Weathering rind was observed in the block of basaltic andesite tuff due to dissolution of calcite producing voids. Eolian volcanic glass altered to mixtrure of allophane-like materials and iron oxyhydroxides at grain edges with relative concentration of Al. Fe, and Ti. Biotite in granodiorite area was transfarmed to vermiculite and interstratified biotite-vermiculite or very rarely to kaolinite and gibbsite. Pyrite in the hydrothermal alteration zone was repalced by iron oxides, resulting in sulfuric acid which locally accelerated alteration of chlorite to expandable clay minerals. Weathering of plagiociase and K-feldspar was negligible. Although glacial debris of the Barton Peninsula has undergone weak chemical weathering with formation of some secondary minerals, massive formation of smectite, abundant in nearby marine sediments, didn't occur.