• Title/Summary/Keyword: 응축 열전달 계수

Search Result 102, Processing Time 0.032 seconds

Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(I) - the Case of Constant Heat Input - (열싸이폰을 이용한 잠열축열시스템의 성능실험(I) - 열주입량이 일정한 경우 -)

  • Kim, Tae-Il;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.28-36
    • /
    • 1992
  • The performance of a latent heat storage system using a thermosyphon as the heat transfer device between the heat source and the phase change material was investigated experimentally. In order to increase the effective conductivity of the phase change material, layers of copper wire mesh were immersed in the paraffin wax(Sunoco P-116) in such a way that they also may be considered as fins of the thermosyphon. The important results are as follows : (1) The void space of the wire mesh allowed the convection to occur, thus enhanced the performance of the system : (2) The increase of the number of layer of wire mesh increased the conduction heat transfer. However, it also had adverse effect of subduing convective motion of liquid wax : and (3) Overall heat transfer coefficient and thermosyphon conductance increased with the increase of the number of layer of wire mesh, whereas the heat transfer coefficient between the thermosyphon and the wax decreased.

  • PDF

Heat transfer characteristics of fin and tube heat exchangers with various interrupted surface for air conditioning application (다양한 형태의 단속표면을 갖는 공조기용 핀-관 열교환기의 열전달 특성)

  • Yun, Jeom-Yeol;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3938-3948
    • /
    • 1996
  • This study is related with the experimental investigation on the heat transfer and pressure drop characteristics of the fin-and-tube heat exchangers with three different interrupted fins and a plane fin for air-conditioning application. Experiments were conducted accordingly following the appropriate development process. Geometry similitude experiment was introduced to predict the performance of fins, and prototype experiment was also performed to confirm the validity of geometry similitude experimental results. However, these experimental results were limited to the sensible heat transfer characteristics of the heat exchangers. Hence, additional experiment was performed using refrigerant to investigate the latent heat transfer characteristics. This paper presents an appropriate process for the development of a new type heat exchanger. Sensible and latent heat transfer characteristics for each fin configuration is also provided along with the optimal fin configuration.

A Study on the Improement of Condensation and Boiling Heat Transfer on Horizontal Tube by Fin Effect(ll)-Shellside Condensation- (수평 원형전열관의 핀효과에 의한 응축 및 비등 열전달촉진에 관한 연구 (2)-튜브외부 응축-)

  • 한규일;조동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1275-1287
    • /
    • 1994
  • Heat transfer performance improvement by fin and grooves is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapezoidal shaped integral-fins having fin densities from 748 to 1654 fpm and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also tested for comparison. R-11 condenses at saturation state of $32^{\circ}C$ on the outside tube surface cooled by inside water flow. All of test data ate taken at steady state. Beatty and Katz's, Rudy's and Webb's theoretical models are used to predict the R-11 condensation coefficient of tubes having 748, 1024 and 1299 fpm. The predicted value by Betty and Katz's model is within 10% of experimental values in this study at fpm<1024 and Rudy's model predicted the experimental data at fpm>1024 within 15%. The tube having fin density of 1299 fpm and 30 grooves has the best overall heat transfer performance. This tube shows the overall heat transfer coefficient of 11500 $W/m^{2}K$,/TEX> at coolant velocity of 3.0m/s.

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on a Horizontal Smooth Tube (수평관에서 이원 혼합냉매의 응축 열전달계수)

  • 김경기;서강태;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1049-1056
    • /
    • 2000
  • In this study, condensation heat transfer coefficients(HTCs) of 2 nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lower than the ideal values calculated by the mass fraction weighting of the pure components HTCs. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against the predicted ones by Colburn and Drew\`s film model and a good agreement was observed.

  • PDF

Experiments on R-22 condensation heat transfer in small diameter tubes (소구경 원관내의 R-22 응축열전달에 대한 실험)

  • 김내현;조진표;김정오;김만회;윤재호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.271-281
    • /
    • 1998
  • In this study, condensation heat transfer experiments were conducted with two small diameter(ø7.5, ø4.0) tubes. Comparison with existing in-tube condensation heat transfer correlations indicated that the correlations overpredict the present data. For example, Akers correlation overpredicts the data upto 104%. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300kg/$m^2$s, the difference was 12%. The pressure drop data of the small diameter tubes ware highly(two to six times) overpredicted by the Lockhart-Martinelli correlation. Subcooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

Condensing Heat Transfer Characteristics of Propylene Refrigerant (프로필렌 냉매의 응축열전달 특성에 관한 실험적 연구)

  • 이호생;김재돌;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.639-644
    • /
    • 2004
  • This paper deals with the heat transfer characteristics of R-1270 (Propylene), R-600a (Iso-butane) and R-290 (Propane) as an environment friendly refrigerant and R-22 for condensing. The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm with 1.32 mm wall thickness is used for this investigation. The test results showed that the local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average condensing heat transfer coefficient was obtained with the maximum value in R-1270 and the minimum one in R-22. Comparing the heat transfer coefficient of experimental results with that of other correlations, the presented results had a good agreement with the Cavallini-Zecchin's correlation. It reveals that the natural refrigerants can be used as substitute for R-22.

Flow Condensation Heat Transfer Characteristic of Hydrocarbon Refrigerants and DME in Horizontal Plain Tube (탄화수소계 냉매들과 DME의 수평 평활관내 흐름 응축 열전달 특성)

  • Park, Ki-Jung;Lee, Min-Hang;Park, Hyun-Shin;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • Flow condensation heat transfer coefficients(HTCs) of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of $40{\pm}0.2^{\circ}C$ with mass fluxes of 100, 200, $300kg/m^2s$ and heat flux of $7.3\sim7.7kW/m^2$. The data are obtained in the vapor Quality range of $10\sim90%$. Test results show that at same mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6% respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 30%. Finally, the pressure drop increase as the mass flux and Quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.

Effects of Tube Diameter and Surface Sub-Cooling Temperature on R1234ze(E) and R1233zd(E) Film Condensation Heat Transfer Characteristics in Smooth Horizontal Laboratory Tubes (수평 평활관에서 관직경 및 표면 과냉도가 R1234ze(E) 및 R1233zd(E) 막응축 열전달에 미치는 영향)

  • Jeon, Dong-Soon;Ko, Ji-Woon;Kim, Seon-Chang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.231-238
    • /
    • 2017
  • HFO refrigerants have recently come to be regarded as promising alternatives to R134a for use in turbo chillers. This study provides results from experiments evaluating the film condensation heat transfer characteristics of HFO refrigerants R1234ze(E) and R1233zd(E) on smooth horizontal laboratory tubes. The experiments were conducted at a saturation vapor temperature of $38.0^{\circ}C$ with surface sub-cooling temperatures in the range of $3{\sim}15^{\circ}C$. We observe that the film condensation heat transfer coefficient decreases as surface sub-cooling temperatures increase. In the case of laboratory tubes with a diameter of 19.05 mm, the film condensation heat transfer coefficients of R1234ze(E) and R1233zd(E) were approximately 11% and 20% lower than those of R134a, respectively. Furthermore, our investigation of the effect of tube diameter on film condensation heat transfer coefficients, demonstrates an inverse relationship where the film condensation heat transfer coefficient increases as laboratory tube diameter decreases. We propose experimental correlations of Nusselt number for R1234ze(E) and R1233zd(E), which yield a ${\pm}20%$ error band.

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF