• Title/Summary/Keyword: 응력 집중계수

Search Result 190, Processing Time 0.023 seconds

Assessment of CFD Estimation Capability for the Local Loss Coefficients of Sudden Contraction and Expansion (급격 확대 및 축소관의 압력손실계수에 대한 전산유체역학 해석의 예측성능 평가)

  • Kim, Hyun-Jung;Park, Jong-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.258-264
    • /
    • 2010
  • Most of fluid systems, such as P&ID in ships, power plants, and chemical plants, consist of various components. The components such as bends, tees, sudden-expansions, sudden-contractions, and orifices contribute to overall pressure loss of the system. The local pressure losses across such components are determined using a pressure loss coefficient, k-factor, in lumped parameter models. In many engineering problems Idelchik's k-factor models have been used to estimate them. The present work compares the k-factor based on CFD calculation against Idelchik's model in order to confirm whether a commercial CFD package can be used for pressure loss coefficient estimation of complex geometries. The results show that RSM is the best appropriate for evaluating pressure loss coefficient. Commercial CFD package can be used as a tool evaluating k-factor even though the accuracy is influenced by a turbulence model.

Analysis of Contact Singular Stresses with Relief Notch by Using Dynamic Photoelasticity(II) (동적 광탄성실험에 의한 응력이완 노치부근에서의 접촉특이응력 해석 (2))

  • Lee, Eok-Seop;Hwang, Si-Won;Nah, Gyeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2097-2107
    • /
    • 1996
  • The dynamic photoelastic technique had been utilized to investigate the possibillity of relieving the large local singular stresses induced at the corner of a right- angle- indenter. The indenter compressed a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effects of the geometric changes of the indenter in terms of the diameter (d) and the location (1) of the stress relieving notch on the behavior of the dynamic contact stresses were investigated. The influence of stress relieving notches positioned along the edge of the semi-infinite body on the dynamic contact stresses were also studied by changing the diameter (D) and the location (L) of the notch. A multi-speak-high speed camera with twelve sparks were used to take photographs of full field dynamic isochromatic fringe patterns. The contact singular stresses were found to be released significantly by the stress relief notches both along the indenter and the edge of the semi-infinite body. The optimal position and geometry of the stress relieving notches were obtained with the aid of limited experimental results.

A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects (면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발)

  • Choung, Joonmo;Han, SeungOh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

A Investigation on Inelastic Lateral-Torsional Buckling Strength of I-Beam with Load Height Effects (하중고 효과가 비탄성 I형보의 횡-비틀림 좌굴거동에 미치는 영향 고찰)

  • Park, Yi Seul;Yoo, Sang Ryang;Oh, Jeong Jae;Park, Jong Sup
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.155-155
    • /
    • 2011
  • 일반적으로 I형 보에 횡하중이 작용하는 경우, 횡 변위와 함께 회전을 동반하는 횡-비틀림 좌굴(Lateral-Torsional Buckling)이 발생하게 된다. 이러한 I형 보의 탄성 및 비탄성 횡-비틀림 좌굴에 대한 해석적 이론적 연구는 이미 많은 연구자들에 의해 수행되었다(Timoshenko 등, 1961; Galambos, 1963; Lindner, 1974; Trahair, 1993). I형 보의 비지지 길이 내 하중이 작용할 때 모멘트 구배계수(Cb)는 하중이 부재 단면에 작용하는 위치에 따라 달라지게 되는데 이를 하중고 효과(Load Height Effects)라고 한다. 탄성 영역 내 비지지길이가 존재하는 I형 보의 하중고 효과를 고려한 모멘트 구배계수 제안식은 Nethercot & Rockey(1971)에 의해 연구된 바 있다. 또한 Helwig 등(1997)은 Nethercot & Rockey(1971)의 제안식을 간략화 하여 탄성 영역 내 비지지길이가 존재하는 I형 보의 하중고 효과를 고려한 모멘트 구배계수식을 제안하였다. 그러나 현재까지 진행 된 하중고 효과에 대한 연구는 탄성 영역 내 비지지 길이가 존재하는 I형 보에 대한 제안식이며 현재까지 비탄성 영역 내 비지지 길이를 갖는 I형 보의 하중고 효과에 대한 연구는 진행된 바 없다. 본 연구는 비탄성 영역 내 비지지 길이가 존재하는 I형 보의 하중고 효과를 고려한 비탄성 횡-비틀림 좌굴강도에 대한 연구를 수행하였다. 하중조건으로는 집중하중 과 등분포 하중을 적용시켰으며, 비선형 횡-비틀림 좌굴 해석을 위해 잔류응력 및 초기변형을 고려하였다. Pi와 Trahair(1995)이 고려한 단순직선분포를 잔류응력으로 가정하였으며, 국내 I형강 표준 치수 허용치(현대제철, 2006)에 근거하여 부재 길이의 0.1%를 초기 최대 횡 변위로 적용하여 초기제작오차로 고려하였다. 유한요소해석결과를 바탕으로 Nethercot & Rockey(1971)와 Helwig 등(1997)의 연구내용을 바탕으로 범용구조해석 프로그램(ABAQUS, 2007)을 이용하여 비탄성 영역 내 존재하는 I형보의 횡-비틀림 좌굴강도를 산정하였다. 유한요소해석결과를 바탕으로 Nethercot & Rockey(1971)및 Helwig 등(1997)의 모멘트구배계수 제안식과 비교 분석 하였고 회기분석프로그램 MINITAB(2006)을 이용하여 비탄성 영역 내 비지지길이가 존재하는 I형보의 하중고 효과를 고려한 모멘트구배계수식을 개발 제안하였다. 본 연구에서 개발된 제안식은 경제적이고 합리적인 휨부재 강도평가에 적극 활용될 수 있으며, 비탄성 영역내 I형보의 횡-비틀림 좌굴강도 및 휨강도 연구에 널리 활용될 것이다.

  • PDF

A Method to Predict the Open-Hole Tensile Strength of Composite Laminate (원공을 가지는 복합재 적층판의 인장강도 예측 기법)

  • Lee, Heun-Ju;Shin, In-Soo;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2011
  • The characteristic length method used to determine a laminate's strength generally requires the test for un-notched and notched laminates and finite element analysis together. In this paper, the methods used to predict the stress distribution and tensile characteristic length of open-hole laminates using the stress concentration factor and equivalent material properties are proposed. These methods do not require data on the failure load of open-hole laminates or finite element analysis. Once the stress and characteristic length have been determined, the failure load of the open-hole laminate can be calculated. The proposed method considers the effect of the material properties as a parameter and therefore can be applied to a variety of materials. The stress distribution is verified by comparing with a finite element analysis and test results. The predicted failure load shows a maximum deviation of 8% from the test results.

Responses and Stresses of Structural Vibration of a Camshaft (캠축의 구조 진동 응답 및 응력)

  • Choi, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.208-213
    • /
    • 2013
  • To get vibration responses, a camshaft is modelled as an unbalanced multiple rotor bearing system. Because of complex geometry and complicated load conditions, the finite element method is used. After the finite element equation of the system is constructed, Newmark's method is used to get the vibration responses. Whirl vibration responses of a V-8 engine camshaft are estimated and compared with measured responses. After the fluctuating stresses are obtained, fatigue analysis is performed based upon the modified Goodman's equation. Stress concentration effects are considered. In the whirl vibration of camshafts, the bending effect is dominant, and the bending deformation is dependent upon the span length between the adjacent bearing journals. For high speeds, the fluctuations of excitation forces are large, and it is known that nonlinear time varying bearing coefficients should be used for analysis.

Analysis of Girders with Web Opening (유공복부(有孔腹部)를 가진 거더의 해석(解析))

  • Yang, Chang Hyun;Chung, Won Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.75-86
    • /
    • 1985
  • A beam with web opening may reduce the cost of steel and the height of multistory steel buildings. Bower's analysis based on the theory of elasticity and Vierendeel analysis had evaluated the normal stresses around the holes, but these analyses have difficulties for practical uses because of complexity and the limitation for their application. In this study, it is shown that the finite element method, using smaller number of isoparametric elements by taking only a part of the beam which includes the hole, can diminish defects of the above two methods and it may represent more satisfactorily the distribution of the local stress concentration around the hole than the other methods which employed linear elements such as in the analysis by Samuel or Redwood. This study presents the effects of moments, shears, and eccentricities of a hole on the distribution of the normal stresses calculated by using the proposed finite element method. Consequently, it is found that the variations of shear force and hole depth give significant effects on the normal stresses around a hole, while the variations of eccentricities of the hole provide a little effect on them. The regression coefficients resulted from the multiple linear regression may be used for estimating the normal stresses around any arbitrary hole in the web of a beam, since the normal stresses guessed by this regression coefficient equation match well the results by the finite element method except the case of large eccentricity.

  • PDF

Influence of Rock Inhomogeneity on the Dynamic Tensile Strength of Rock (암석의 동적 인장강도에 미치는 불균질성의 영향)

  • Cho, Sang-Ho;Yang, Hyung-Sik;Katsuhiko Kaneko
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2003
  • The fracture processes under dynamic loading in tension were simulated using a proposed numerical approach and analyzed to determine dynamic tensile strength. The dynamic tensile strength and the scatter of the strength data decreased with increasing uniformity coefficients. The differences of static and dynamic tensile strength were due to the stress concentrations and redistribution mechanisms in the rock specimen. Although there were different mechanisms for the static and dynamic fracture processes, the static and dynamic tensile strengths were close to the mean microscopic tensile strength at high values of the uniformity coefficient. This paper shows that the rock inhomogeneity has an effect on dynamic tensile strength and is a factor that contributes to the different specimen strengths under dynamic and static loading conditions.

A Comparative Study on the Crack Propagation Characteristics According to the Pre-Notch Shapes of Fatigue Indicator Sensor (Fatigue Indicator Sensor의 형상에 따른 균열진전 특성의 비교 연구)

  • Kim, Jae-Hyun;Kim, Seul-Ki;Cho, Young-Gun;Yeo, Seung-Hoon;Kim, Kyung-Su;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.565-572
    • /
    • 2010
  • It is difficult to predict the accurate fatigue life of the ship structure because of load uncertainty and load redistribution at the ship structure members. As one of studies for accurate evaluation and prediction of fatigue life, it is a promising way to detect the crack previously by attaching the Fatigue Indicator Sensor (FIS) at the crack prediction region. In order to predict the fatigue life of the ship structure by using FIS, it is required to know previously the crack propagation characteristics according to pre-notch shapes. In this study, we obtained the stress distribution phase, stress concentration factors and stress intensity factor of various pre-notch shapes through FEA. Additionally, we conducted the fatigue test and obtained the characteristics of crack propagation according to the pre-notch shapes through comparison between the fatigue test and the FEA. Consequently, we classified the pre-notch shape into 3 categories: Long, Medium, and Short life type. On the basis of the numerical and experimental results, the FIS can be developed.

An Estimation of the Stress Concentration Factor for Mast Lug of Yacht with Different Shapes (해양레저용 요트의 마스트 러그 형상에 따른 응력집중계수 추정)

  • Roh, Ji-Sun;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • Recently, according to the increase of income and development of quality of life, the leisure industry has been developed. In particular, the interest of design and manufacture technology of leisure yacht has significantly increased. However, domestic market of leisure ships is currently in its initiating stage. So research and development for structural strength of leisure yacht need to be investigated. In this study, lug of yacht's mast which is known for a critical damage region is explicitly considered. This paper deals with the estimation of stress concentration factors (SCFs) for lug of yacht's mast depending on dimensions of lug using hot spot stress. Also, SCF formulae is suggested using parametric study.