• Title/Summary/Keyword: 응력 분산

Search Result 275, Processing Time 0.024 seconds

Stress Analysis and Fatigue limit Evaluation of Plate with Notch by Lock-In Thermography (Lock-In Thermography를 이용한 노치시험편의 응력해석 및 피로한계치 평가)

  • Kim, Won-Tae;Kang, Ki-Soo;Choi, Man-Yong;Park, Jeong-Hak;Huh, Yong-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.315-320
    • /
    • 2006
  • This paper describes stress analysis and fatigue limit evaluation of plate with V-notch and hole-notch by lock-in infrared thermography. Temperature variation of a specimen under cyclic loading is negatively proportional to the sum of principle stress change and the surface temperature measured by infrared camera is calculated to the stress of notch specimens, based on thermoelastic equation. And also, fatigue limitation can be evaluated by the change of intrinsic energy dissipation. Fatigue limitation of two notch specimens is evaluated as 164 MPa and 185 MPa, respectively and the stress measured by Lock-in infrared Thermography show good agreement within 10% error.

A Study on the Finite Difference Forward Modeling in SASW Method (차분 전개를 이용한 표면파 기법의 모형 응답 계산)

  • Ha, Hee-Sang;Shin, Chang-Su;Seo, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 2002
  • An analytical forward modeling algorithm was developed for the efficient application to the geotechnical engineering in SASW (Spectral Analysis of Surface Waves) method. for the theoretical dispersion curve, the finite difference method using motion stress vector, which was proposed by Aki and Richards, was employed and verified with two earth models. For the stable and fast calculation, it was found that the model size depending on the frequency range is suitable $1.5\~2$ times bigger than the wavelength.

A Three-dimensional Photoelastic Analysis of Stress Distributions Around Osseointegrated Implants and Abutment Teeth According to Bridge Connecting Type (골유착성(骨癒着性) 임플란트와 치아간(齒牙間)의 보철물(補綴物) 연결(連結) 형태(形態)에 따른 주위(周圍) 골조직(骨組織)의 응력분산(應力分散)에 관한 3차원적(次元的) 광탄성(光彈成) 분석(分析))

  • Lee, Moo-Geon;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.120-147
    • /
    • 1994
  • This study was performed for the purpose of evaluating the stress distribution around threaded type implants, cylindrical type implants and teeth connected with rigid or non-rigid connector. The stress distribution around the surrounding bone was analyzed by three-dimensional photoelastic method. Twelve mandibular photoelastic epoxy resin models and a circular polariscope were used to record the isochromatic fringes. After the stress distribution around the implant and tooth was observed, the results were as follows ; 1. In threaded type implants, stress concentrated patterns were observed at the neck either vertical or 25 degree lateral force. 2. The stress concentrated patterns were observed at the tooth apical portion and neck portions of the implant and tooth when a threaded implant was connected with the tooth by either a rigid or non-rigid connector. More force was generated at the tooth neck portion by a rigid connector and more force at the implant neck portion by a non-rigid connector. 3. The stress concentrated patterns were observed at the apical portion of the implant and tooth when a cylindrical type ,implant was connected with the tooth either by a rigid or non-rigid connector. More force was generated at the tooth apical portion by a rigid connector and more force at the neck portion of the tooth and implant by a non-rigid connector. 4. The stress around the tooth was more equally distributed in a threaded type implant than in a cylindrical implant when the tooth was connected with either a rigid or non-rigid connector. 5. The stress around a threaded type implant was progressively more equally distributed in the following order : 1) when used a single implant, 2) a non-rigid connection with the implant and tooth, 3) a rigid connection with the implant and tooth, 4) a rigid connection with two implant fixtures.

  • PDF

Evaluation of the stress distribution in the external hexagon implant system with different hexagon height by FEM-3D (임플란트 hexagon 높이에 따른 임플란트와 주위 조직의 응력분포 평가)

  • Park, Seong-Jae;Kim, Joo-Hyeun;Kim, So-Yeun;Yun, Mi-Jung;Ko, Sok-Min;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • Purpose: To analyze the stress distribution of the implant and its supporting structures through 3D finite elements analysis for implants with different hexagon heights and to make the assessment of the mechanical stability and the effect of the elements. Materials and methods: Infinite elements modeling with CAD data was designed. The modeling was done as follows; an external connection type ${\phi}4.0mm{\times}11.5mm$ Osstem$^{(R)}$ USII (Osstem Co., Pusan, Korea) implant system was used, the implant was planted in the mandibular first molar region with appropriate prosthetic restoration, the hexagon (implant fixture's external connection) height of 0.0, 0.7, 1.2, and 1.5 mm were applied. ABAQUS 6.4 (ABAQUS, Inc., Providence, USA) was used to calculate the stress value. The force distribution via color distribution on each experimental group's implant fixture and titanium screw was studied based on the equivalent stress (von Mises stress). The maximum stress level of each element (crown, implant screw, implant fixture, cortical bone and cancellous bone) was compared. Results: The hexagonal height of the implant with external connection had an influence on the stress distribution of the fixture, screw and upper prosthesis and the surrounding supporting bone. As the hexagon height increased, the stress was well distributed and there was a decrease in the maximum stress value. If the height of the hexagon reached over 1.2mm, there was no significant influence on the stress distribution. Conclusion: For implants with external connections, a hexagon is vital for stress distribution. As the height of the hexagon increased, the more effective stress distribution was observed.