• Title/Summary/Keyword: 응력 범위

Search Result 697, Processing Time 0.026 seconds

Evaluation of Rail Fatigue Life by Grinding of Kyeong-Bu High-Speed Line (경부고속선의 레일 연마에 따른 레일 피로수명 평가)

  • Kim, Man-Cheol;Choi, Eun-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.577-582
    • /
    • 2010
  • The importance of maintenance of rail surface defects is increasing according to the KTX operation. That is because during high speed operation of rolling stocks, rail surface defects shorten fatigue life of rail, accelerate track degradation and deteriorate ride comfort. Rail grinding has been applied for effective rail maintenance in Kyeong-Bu HS line. This paper evaluates the effectiveness of rail grinding in term of rail fatigue life. To this end, the stresses of the rail are measured under KTX running and the equivalent stress range is calculated by RMC after the frequency analysis done with rainflow counting method. Also, The Modified Miner's rule is applied to predict the fatigue life of ground rail. The result of the analysis shows that the fatigue life of ground rail is increased by 15%.

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball (직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2000
  • A small diameter steel-ball impact experiment was performed to study the impact resistance of the surface of glass plates bonded with glass fabric/epoxy lamina. Five kinds of materials were used in this study: soda-lime glass plates, glass/epoxy lamina(one layer)-bonded and unbonded glass plates, glass/epoxy lamina(three layers)-bonded and unbonded glass plates. The range of impact velocity was 40 120m/s. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates. With increasing impact velocity, various types of surface cracks such as ring, cone, radial and lateral cracks took place in the interior near the impacted site of glass plates. The cracks drastically decreased with glass/epoxy lamina coating. The surface fracture behavior could be evaluated using the maximum stress and the absorbed fracture energy.

  • PDF

An Improved Mesh-free Crack Analysis Technique Using a Singular Basis Function (특이기저함수를 이용하여 개선한 Mesh-free 균열해석기법)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.381-390
    • /
    • 2001
  • In this paper, a new improved crack analysis technique by Element-Free Galerkin(EFG) method is proposed, in which the singularity and the discontinuity of the crack successfully described by adding enrichment terms containing a singular basis function to the standard EFG approximation and a discontinuity function implemented in constructing the shape function across the crack surface. The standard EFG method requires considerable addition of nodes or modification of the model. In addition, the proposed method significantly decreases the size of system of equation compared to the previous enriched EFG method by using localized enrichment region near the crack tip. Numerical example show the improvement and th effectiveness of the previous method.

  • PDF

Numerical Analysis of Borehole Stability Depending on Drilling Fluid (Drilling Fluid를 적용한 시추공의 안정성에 대한 수치해석)

  • Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.183-194
    • /
    • 2017
  • When a borehole is drilled, the load distributed by the removal is taken to re-establish equilibrium. As a result, the stresses around the borehole is redistributed. If there is no hydrostatic support pressure by drilling fluid (mud) introduced into the borehole, failure in the formation may take place. The mud pressure boundary that keeps the borehole stable is defined as a mud window. To predict the potential for failures around the borehole, a series of numerical analysis were performed and compared with a mud window. The effect of failure criterion and the intial stress ratio adopted on the mud window was also studied.

A Study on the Adequate Radius of Circular Arc in the Involute-Circular Arc Composite Tooth Profile (인벌류우트-원호 합성치형의 적정 원호반경에 대한 연구)

  • 정인승;손지원;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.296-303
    • /
    • 1987
  • The composite gear which is composed of involute curve and circular arc has been studied. In the vicinity of pitch point, its profile is an involute curve, and in the dedenum, a circular arc. The curve in the dedendum is generated by the circular arc of the mating gear. Though the available range between minimum and maximum radius of circular arc can be given by existing tooth profile equation, there was no formulation which relates design parameters to the desired radius. It is attempted to get the formula for the radius of circular arc as a function of design parameters, such as unwounded angle, number of teeth, module, and pressure angle. The radius of circular arc, the chordal tooth thickness at working root circle, nominal bending stress, Hertz stress and contact ratio obtained from derived formula are compared with those of the existing design criteria. And these are compared with those of involute gear.

Rheological Properties of Traditional kochujang (전통 고추장의 레올로지 특성)

  • Kim, Youn-Chung;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1313-1318
    • /
    • 2000
  • 총고형분 함량$(TS:\;50{\sim}57%)$을 달리하여 숙성시킨 고추장의 유동특성, 정적 및 동적점탄특성을 관찰하였다. 고추장의 TS가 증가함에 따라서 점조도 지수(K)와 겉보기 점도$({\eta}_{a.5})$는 증가하였으며 유동성 지수(n)는 1보다 훨씬 낮은 0.24-0.31의 범위를 나타내어 고추장은 shear-thinning 성질을 보여주었다. 고추장의 항복응력 측정에서는 고추장의 TS가 증가함에 따라 Casson 항복응력$({\sigma}_{oc})$은 증가하는 경향을 나타내었으며, 또한 고추장의 액상 매개체인 serum 점도$({\eta}_{se})$는 고추장의 TS와 매우 좋은 상관관계$(R^2=0.97)$를 나타내었다. 고추장의 동적점탄성 실험에서는 주파수$({\omega})$가 증가함에 따라 저장탄성률(G#)와 손실탄성률(G@)은 증가하였으며 양(+) 기울기로 G#수치가 G@수치보다 높게 나타났다. 이는 고추장이 약한 겔과 같은 구조적 특성을 갖고 있으며 또한 shear-thinning 거동을 가지고 있음을 나타낸다. 정적점탄성 실험에서 고추장의 총고형분 함량에 따라서 순간탄성 변형$(J_0)$과 지연탄성변형$(J_1)$은 총고형분 함량이 증가함에 따라서 감소하였으며 점도$({\eta}_N)$와 지연시간 $({\tau}_1)$은 증가하였다. 따라서 고추장은 농도가 증가함에 따라 보다 탄력적이며 안정된 구조를 형성하고 있음을 알 수 있었다.

  • PDF

An Experimental Study on the Soil Loss Rate According to Froude Number and Bed Material in High Speed Flow (고속흐름에서의 하상재료와 Froude 수에 따른 토양 유실율에 관한 실험적 연구)

  • Jung, Dong Gyu;Hyun, Park Jae;Kim, Young Do;Soo, Kim Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.110-110
    • /
    • 2017
  • 하천시설물 설계, 시공 및 관리에 있어서 하상재료는 매우 중요하다. 예를 들어, 재료에따른 호안이나 하안의 보호능력이 떨어지거나 수리적 특성에 의해 쉽게 파손될 수 있으며, 구성물질에 의해 하천환경의 변화를 야기시킬 수 있다. 때문에 본 연구에서는 비독성 자연형 하상재료를 이용하여 홍수시 수리조건을 반영하여 상류에서부터 사류까지 다양한 Froude 수에 따른 저항력에 대한 실험을 진행하였다. 본 연구의 실험진행은 기 개발된 바닥응력을 직접측정하는 장치와 PIV시스템을 이용하여 수리특성을 측정하였다.(Park J.H. et al. 2016, Flow Measurment and instrumentation.) 또한 각각의 조건에 따른 수리학적 특성의 변화를 비교하였다. 하상 재료는 콘크리트를 배제한 자연형 제방이나 하상에 사용되는 재료를 이용하여 비교하였으며 Foude 수는 일반적인 흐름의 상류에서 홍수 시, 고유량에서 발생하는 사류까지 다양한 범위에서 실험을 진행하였으며, 이러한 재료와 Froude 수에 따른 토양 유실에 대한 실험을 진행하였다. 토양 유실율의 측정 장비로는 초음파 변위계를 이용하여 실험 전, 후의 세굴심 변화를 이용하여 토양의 세굴면적을 수치화 시킨 수치로 적용하여 토양 유실율을 산정하였다.

  • PDF

Numerical Evaluation of Excavation Damage Zone Around Tunnels by Using Voronoi Joint Models (Voronoi 절리모델에 의한 터널 주변 굴착손상권(EDZ)의 해석 사례)

  • Park, Eui-Seob;Martin, C. Derek;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.328-337
    • /
    • 2008
  • Quantifying the extent and characteristics of the excavation damage zone(EDZ) is important for the nuclear waste industry which relies on the sealing of underground openings to minimize the risk for radionuclide transport. At AECL's Underground Research Laboratory(URL) the Tunnel Sealing Experiment(TSX) was conducted and the tunnel geometry and orientation relative to the stress field had been selected to minimize the potential for the development of an EDZ. The extent and characteristics of the EDZ was measured using velocity profiling and permeability measurements in radial boreholes. The results from this EDZ characterization are used in this paper to evaluate a modeling fir estimating the extent of the EDZ. The methodology used a damage model formulated in the Universal Distinct Element Code and calibrated to laboratory properties. This model was then used to predict the extent of crack initiation and growth around the TSX tunnel and the results compared to the measured damage. The development of the damage zone in the numerical model was found to be in good agreement with the field measurements.