• Title/Summary/Keyword: 응력 구배

Search Result 103, Processing Time 0.022 seconds

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Motive for the Fire Resistance Design Guidelines for High-Strength Concrete Structures (고강도콘크리트 구조내화설계 지침의 제정 배경 및 고찰)

  • Kwon, Young-Jin;Lee, Jae-Young;Shin, Yi-Chul;Seo, Dong-Gu;Han, Byung-Chan;Kim, Jae-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.3-8
    • /
    • 2007
  • 초고층건축물이 증가함에 따라 고강도콘크리트의 사용량이 증가하는 추세이다. 고강도콘크리트는 내구성 및 사용성이 우수한 장점을 가지고 있는 반면 화재시 심각한 폭렬현상을 발생시켜 콘크리트 내역 감소 및 철근의 노출로 인해 건물이 붕괴까지 이르게 되는 원인이 된다. 따라서 고강도콘크리트의 내화특성을 고려한 해석(열응력, 질량 이동, 폭렬) 과정을 거쳐 폭렬 저감방안을 모색하여야 한다. 이러한 폭렬 저감방안을 표층부의 온도상승 온도구배 저감 방안, 수중기압 저감/수분 이동을 용이하게 하는 방안, 폭렬억제형 피복콘크리트 이용방안, 폭렬에 의한 콘크리트의 비산을 방지하는 방안 등이 있으며 각 방안들은 장단점을 내포하고 있어 상황에 따라 탄력적으로 적용하여야 하며, 향후 고강도 콘크리트의 역학적 성상을 고려하여 단점을 보완하고 추가적인 대책용 수립할 수 있도록 많은 연구가 필요 할 것으로 판단된다.

  • PDF

Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake (2차유동이 평판후류의 난류구조에 미치는 영향)

  • Kim, Hyeong Soo;Lee, Joon Sik;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

Investigation of the Performance Based Structural Safety Factor of Elbows in Nuclear Power Plants (원전 엘보우의 성능기반 안전여유도 분석)

  • Lee, Sung-Ho;Park, Chi-Yong;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.826-831
    • /
    • 2009
  • The piping systems in nuclear power plant are composed of various typed pipes such as straight, elbow pipe, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are classified as pipe size and type for selecting the investigating range. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(twice elastic slop) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

Rock Slope Stability Analysis in Boeun Region Considering Properties of Discontinuities (불연속면의 특성은 고려한 보은지역 암반사면 안정성해석)

  • 이지수;박혁진;민경덕;구호본
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.601-615
    • /
    • 2001
  • The study area. Boeun-eup Boeun-kun, belongs to Ogchon metamorphic belt which is highly metamorphosed and consisted of complex geologic formations. Even though the geological structures and formations are complex and metamorphosed, the geological investigation and consideration are not enough and consequently the plane failure is occurred in the rock slope which was under construction on 1 : 0.5 gradient. This area is assessed as unstable and additional failure is possible by the discontinuity with same direction of failure surface. Therefore, the authors evaluate the slope stability using various analysis methods such as SMR, stereographic projection method, and the limit equilibrium analysis. In order to analyze stress redistribution and nonlinear displacement behavior caused by stress release, the authors conduct numerical analysis with UDEC and then the behavior of rock mass is analyzed after reinforcements are applied.

  • PDF

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments (고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.711-718
    • /
    • 2011
  • The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

Growth of Single Crystal $\beta$-BaB2O4 by the Direct Czochralski Method (Czochralski방법에 의한 $\beta$-BaB2O4단결정 성장)

  • ;;R.K. Route;R.S. Feigelson
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.239-257
    • /
    • 1996
  • $\beta$-BaB2O4는 고출력 가시광선 및 적외선을 발진시키는데 유용한, 비선형 특성을 가진 물질이다. $\alpha$-$\beta$ 상전이 온도가 녹는점보다 18$0^{\circ}C$ 낮기 때문에 보통 flux법으로 단결정을 성장시킨다. 수년전 Itoh등은 $\beta$-BaB2O4단결정을 congruent조성의 용액으로부터 Czochralski법으로 metastable한 상태에서 직접 성장시켰다. 그렇지만 그 공정은 잘 이해되지 않고 있으며 재현하기가 매우 어렵다. 저자들은 $\beta$-BaB2O4단결정을 용액표면온도도 1034$^{\circ}$-1085$^{\circ}C$, pulling rate 3mm/h, 10-30 rpm의 범위에서 성장시켰으며 융액표면의 온도구배는 $\beta$-상으로 성장시키는데 매우 중요한 인자로 여겨진다. Seed로는 직경 1-2mm의 c축방향 $\beta$-BaB2O4단결정 봉이 상용되어 성장방향을 조절하고 열응력을 최소화시켰다. 성장된 $\beta$-상의 단결정들은 6-fold모양을 하며 표면에 작은 비늘같은 것들이 붙어있고 중심부에 core가 있는 것을 알았다. Flux법으로 성장시킨 $\beta$-BaB2O4단결정을 사용한 seeds는 단결정 성장 및 냉각 중에 cracks이 자주 발생하였으며, boule의 cracks은 afterheater를 사용할 경우 다소 줄일 수 있었다. 성장된 단결정의 광학특성이 측정되었다.

  • PDF

The Finite Element Analysis on the Characteristics of the Hydrogen Diffusion for the Cr-Mo Steels (Cr-Mo강의 수소확산 특성에 관한 유한요소해석)

  • Lee, Hwi-Won;Ha, Min-Su
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • The size of hydrogen molecule is not so small as to invade into the lattice of material, and therefore, hydrogen invades into the material as atom. Hydrogen movement is done by diffusion or dislocation movement in the near crack tip or plastic deformation. Hydrogen appeared to have many effects on the mechanical properties of the Cr-Mo steel alloys. The materials for this study are 1.25Cr-0.5Mo and 2.25Cr-1Mo steels used at high temperature and pressure. The hydrogen amount obtained by theoretical calculation was almost same with the result solved by finite element analysis. The distribution of hydrogen concentration and average concentration was calculated for a flat specimen. Also, finite element analysis was employed to simulate the redistribution of hydrogen due to stress gradient. The calculation of hydrogen concentration diffused into the material by finite element method will provide the basis for the prediction of delayed fracture of notched specimen. The distribution of hydrogen concentration invaded into the smooth and notched specimen was obtained by finite element analysis. The hydrogen amount is much in smooth specimen and tends to concentrate in the vicinity of surface. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial (비파괴적 연속압입시험: 대형구조물로부터 nano소재까지의 응용연구)

  • Jeon, Eun-Chae;Kwon, Dong-Il;Choi, Yeol;Jang, Jae-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.333-346
    • /
    • 2002
  • The continuous indentation techniques are one of the most effective methods to nondestructively estimate mechanical properties. There are many applications in various dimensions of materials from macro-scale, through micro-scale, even to nano-scale range. The macro-range technology of kgf-load level is now focused on the evaluation of tensile properties and residual stress of bulk materials, for example, used in conventional load-bearing structures and in-use pipelines. The technology and the apparatus were successfully developed by a domestic research group. The micro-range technology of gf-load level can be applied to investigate some property-gradient materials such as weldment. Because it has better spatial resolution than the macro-range technology. The nano-range technology (called nanoindentation technique) of mgf-load level is basically used to evaluate hardness and modulus of micro- and nano-materials. Moreover, many researches are going on to measure tensile properties and residual stress. The nanoindentation technology is easy to be applied to the various fields, such as semiconductor devices, multiphase materials, and biomaterials, though other methods are too difficult to be applied due to dimensional or environmental limitations. On the basis of these accomplishments, the international and the domestic standards are being established.

Durability Design of Composite Piston in Marine Diesel Engines (박용 디젤엔진용 분리형 피스톤의 내구설계)

  • Son, Jung-Ho;Ha, Man-Yeong;Ahn, Sung-Chan;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.651-657
    • /
    • 2010
  • A composite piston with a crown made of steel and a skirt made of NCI is used in a marine diesel engine, which has a maximum firing pressure of over 180 bar and a high thermal load. In the fatigue design of the composite piston, the fatigue is influenced by factors such as the load type, surface roughness, and temperature; further, the distribution ratio of the firing force from the crown to the skirt is important for optimizing the design of the crown and skirt. In this study, the stress gradient method was used to consider the effect of the load type. The temperature field on the piston was predicted by cocktail-shaking cooling analysis, and influence of high temperature on fatigue strength was investigated. The load transfer ratio and contact pressure were optimized by design of the surface shape and accurate tolerance analysis. Finally, the cooling performance and durability design of the composite piston were verified by performing a long-term prototype test.