• Title/Summary/Keyword: 응력확대계수의 형상계수

Search Result 63, Processing Time 0.023 seconds

Application of Fracture Mechanics to Design of Machine and Structuire Element (파괴역학을 이용한 기계요소 및 구조물 설계방안 (4))

  • Lee, Eok-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-27
    • /
    • 1987
  • 부재가 피로하중을 받을 경우에는 피로하중의 변동과 균열의 성장에 인한 균열크기의 변동때문에 각순간에서의 응력확대계수가 변화하게 된다. 피로균열성장을 모델링할때 응력확대계수를 이용할 수 있는 타당성은 균열성장속도가 매우 느리므로 순간순간에서의 형상계수의 변화가 거의 무시할 수 있다는 사실에 근거하고 있다. 즉 균열의 길이는 순간순간에 일정하다고 생각하는 즉 준-정적인 문제로 귀착되며, 이 경우 에는 순간순간에 대응하는 단지 변동하는 하중에 대한 응력확대계수의 변동양상을 검토하면 되는 것이다.

  • PDF

Reliability Estimation for Crack Growth Life of Turbine Wheel Using Response Surface (반응표면을 사용한 터빈 휠의 균열성장 수명에 대한 신뢰성 평가)

  • Jang, Byung-Wook;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.336-345
    • /
    • 2012
  • In crack growth life, uncertainties are caused by variance of geometry, applied loads and material properties. Therefore, the reliability estimation for these uncertainties is required to keep the robustness of calculated life. The stress intensity factors are the most important variable in crack growth life calculation, but its equation is hard to know for complex geometry, therefore they are processed by the finite element analysis which takes long time. In this paper, the response surface is considered to increase efficiency of the reliability analysis for crack growth life of a turbine wheel. The approximation model of the stress intensity factors is obtained by the regression analysis for FEA data and the response surface of crack growth life is generated for selected factors. The reliability analysis is operated by the Monte Carlo Simulation for the response surface. The results indicate that the response surface could reduce computations that need for reliability analysis for the turbine wheel, which is hard to derive stress intensity factor equation, successfully.

Evaluation of the Fatigue Behavior before and after Wall Thickness Penetration in Carbon Steel Pipes with Circumferential Part Through-Wall Surface Crack (원주방향 미관통 표면결함을 가지는 탄소강 배관의 두께관 통전.후의 피로거동 평가)

  • Seok-Hwan AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.147-154
    • /
    • 2000
  • 실온 대기 중에서 탄소강배관(STS370)의 피로시험을 행하였다. 배관에는 외부결함을 인공적으로 상정하여, 피로균열진전 및 관통의 거동, 균열형상, 누설 및 파단수명, 균열개구변위를 실험과 이론의 양면으로부터 비교·검토하였다. 특히, 배관의 벽두께 관통후에 있어서의 응력확대계수를 평가하기 위하여 새로운 식을 제안하였다. 피로균열이 관벽을 관통하기 전에 있어서는 판모델에 의한 Newman-Raju의 응력확대계수 평가식을 이용하므로서 aspect비와 누설수명 등 관통전의 피로균열성장거동을 평가할 수 있음을 나타내었다. 또한, 피로균열이 관벽을 관통한 후에 있어서는 본 논문에서 제안한 배관모델에 의한 응력확대계수의 평가식을 이용하여 관통후의 균열형상, 파단수명 및 균열개구변위 등 관통후의 피로균열성장거동을 평가하였다.

  • PDF

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

Post-Processing Technique on the Determination of Crack Tip Stress Intensity Factors (균열선단 응력확대계수 결정을 위한 후처리기법)

  • Jin, Chi Sub;Jang, Heui Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.17-27
    • /
    • 1991
  • The determination of the stress intensity factors is investigated by means of a surface integral defined around the crack tip of the structure. It has been shown in this work that this integral is derived from the standard path integral J. The use of the surface integral has also been extended to the case where body forces act. Computer program obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length/crack length)is about 25 percent, relatively correct $K_I$ and $K_{II}$ values can be obtained for the exterior radius ranging from 1/3 to 1 of the crack length.

  • PDF

Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes (표면균열이 있는 직관에 대한 선형탄성 응력확대계수 유한요소해석 결과의 요소 및 균열형상 민감도)

  • Ryu, Dongil;Bae, Kyung-Dong;Je, Jin-Ho;An, Joong-Hyok;Kim, Yun-Jae;Song, Tae-Kwang;Kim, Yong-Beum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.521-527
    • /
    • 2013
  • This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3D) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RCC-MR A16) to prove the accuracy of the FE results and the differences between the codes. Through the 3D FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes.

Stress Intensity Factors for a Center Cracked laminated Composites under Shear Loading (전단하중을 받는 복합 적층재 중앙균열의 응력확대계수)

  • 오재협;김성호;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.838-848
    • /
    • 1992
  • The objective of the study is to provide a theoretical tools for analyzing the fracture of leyered composites with a center crack. It is assumed that the composite is composed of successive accumulation of the fiber layer and resin layer with the fiber layer being perfectly bonded to the resin layer except the region of a center crack. In-plane shear loading (Mode II) and the anti-plane shear loading (Mode III) are considered separately. Boundary value problems are formulated by using a plane theory of elasticity and governing equations are reduced to a Fredholm integral equation of a second kind. The equation is solved numerically and the stress intensity factors are obtained. The normalized Mode II and Mode III stress intensity factors are evaluated for various combinations of material properties and for various geometrical parametes.