• Title/Summary/Keyword: 응력해석

Search Result 5,754, Processing Time 0.04 seconds

Analysis of Failure Criterion for Combustion Pipe with Notch using Effective Distance (유효거리를 이용한 연소기관 노치부의 파손기준 해석)

  • Kim, Duck-Hoi;Kim, Jae-Hoon;Moon, Soon-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1-6
    • /
    • 2004
  • In this study, the intrinsic static/dynamic fracture toughness of Al 7175=T74 is evaluated from the apparent static/ dynamic toughness of notched specimen, The critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. Also, effective distance is applied to estimate the failure criterion for the combustion pipe with notch. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, the effective In this study, the intrinsic static/dynamic fracture toughness of Al 7175=T74 is evaluated from the apparent static/ dynamic toughness of notched specimen, The critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. Also, effective distance is applied to estimate the failure criterion for the combustion pipe with notch. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, the effective distance can be used to evaluate the failure criterion of structure with notch.

  • PDF

Improving the Whitening Phenomenon Technology for Preform PET Injection Molding by Using a Ceramic Insulation Gate (세라믹 단열 게이트를 이용한 블로우성형용 PET 프리폼의 백화현상 저감 기술)

  • Kwak, Tae-Soo;Hwang, Deok-Sang;Kang, Byung-Ook;Kim, Tae-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.63-68
    • /
    • 2017
  • The purpose of this study is to improve the whitening phenomenon around the PET preform gate for blow molding. CAE analysis of plastic injection molding has been applied to design of preform shape and select the injection molding conditions. A ceramic insulation gate with lower thermal conductivity than metal is applied to improve the whitening phenomenon created around the gate in the injection molding process. According to the results of CAE analysis, the warpage deformation at the square corner was estimated to be about 0.34 mm at the bottom. From the results of the temperature history analysis, it was confirmed that the resin near the gate cooled more rapidly than the cavity. Ceramic insulated gates were fabricated to reduce the cooling rate and experiments were conducted to confirm the effectiveness of the whitening phenomenon improvement. As a result of the ceramic insulation gate experiment, it was confirmed that the whitening phenomenon was significantly reduced around the gate.

Numerical Study of Flow Pattern and Drug Deposition in Drug-Eluting Stent (약물분출 스텐트 주위 유동형태와 약물침전에 대한 수치해석)

  • Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1053-1060
    • /
    • 2011
  • This study is performed to determine the drug concentration profiles of drug-eluting stents (DES) for an ideal circular ring stent and intertwined stent models for various Reynolds numbers (Re = 200, 400, and 800). The Navier.Stokes equations coupled with the advection-diffusion equation are solved numerically in order to determine how the flow patterns and drug deposition are affected in the in-stent and post-stent regions where flow separation and recirculation occur. The presence of DES within the arterial segment affects the local drug distribution in the flow field. As a result, the drug concentration for the intertwined stent is higher over the in-stent region in comparison with the ideal stents. For a given stent geometry, the local drug concentration in the in-stent region decreases with Reynolds number, while for a given Reynolds number, the local drug concentration is relatively insensitive to the stent geometry. The results show that drug concentration along the arterial wall is significantly higher within the in-stent and post-stent regions for the intertwined stent geometry than for the ideal stent geometries.

Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design (구조 최적설계를 위한 다양한 근사 최적화기법의 적용 및 비교에 관한 연구)

  • Song, Chang-Yong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1603-1611
    • /
    • 2010
  • The comparative study of regression-model-based approximate optimization techniques used in the strength design of an automotive knuckle component that will be under bump and brake loading conditions is carried out. The design problem is formulated such that the cross-sectional sizing variables are determined by minimizing the weight of the knuckle component that is subjected to stresses, deformations, and vibration frequency constraints. The techniques used in the comparative study are sequential approximate optimization (SAO), sequential two-point diagonal quadratic approximate optimization (STDQAO), and approximate optimization based on enhanced moving least squares method (MLSM), such as CF (constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization (PIDO) tools are utilized for the application of SAO and STDQAO. The enhanced MLSM-based approximate optimization techniques are newly developed to ensure constraint feasibility. The results of the approximate optimization techniques are compared with those of actual non-approximate optimization to evaluate their numerical performances.

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure (II) (선체 용접부의 균열진전 및 피로수명예측에 관한 연구(II))

  • Kim, Kyung-Su;Shim, Chun-Sik;Kwon, Young-Bin;Ko, Hee-Seung;Ki, Hyeok-Geun;Viswanathan, K.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of crack initiation and propagation stages. For a welding member in ship structure, the fatigue crack propagation life is more important than the fatigue crack initiation life. To calculate precisely the fatigue crack propagation life at the critical welding location, the knowledge of the residual stress sensitivity on the fatigue strength is necessary. In this study, thermo elastic-plastic analysis was conducted in order to examine the effect of residual stress on the fatigue crack propagation life. Also the fatigue crack propagation lives considering residual stress were calculated using fatigue crack growth code, AFGROW, on the basis of fracture mechanics. AFGROW is widely used for fatigue crack growth predictions under constant and variable amplitude loading. The reliability of AFGROW on the fatigue of ship structure was confirmed by the comparison of the estimated results with the fatigue propagation test results.

Aging Characteristic of Intermetallic Compounds and Bonding Strength of Flip-Chip Solder Bump (플립 칩 솔더 범프의 접합강도와 금속간 화합물의 시효처리 특성)

  • 김경섭;장의구;선용빈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of micro-electronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder bump and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6/Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

  • PDF

Numerical Simulation of Tidal Currents of Asan Bay Using Three-Dimensional Flow Modeling System(FEMOS) (3차원 흐름 모델링시스템(FEMOS)을 이용한 아산만 조류모의)

  • 정태성;김성곤;강시환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.151-160
    • /
    • 2002
  • A modeling system for three-dimensional flow (FEMOS) has been developed and applied to simulate the tidal currents of Asan Bay. The system can consider tidal flats changing with time and uses a finite element method that can adapt coastline change effectively. The simulation results for Asan Bay with large tidal flats, shallow water depth and high tidal range showed good agreements with the observed currents of long-term variations at the medium layer and short-term variations of vertical profiles. Based on the simulated tidal currents, the horizontal distributions of bottom shear stress were calculated and showed close relation with the change of bottom topography. The system can be used widely to study coastal circulation in the coastal region with complex geography.

Evaluation of Caisson Quay Wall Behavior during the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 1995 Kobe 지진시 케이슨 안벽의 거동 평가)

  • Lee, Jin-sun;Noh, Gyeong-do
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.401-412
    • /
    • 2016
  • On Tuesday, January 17, 1995, an earthquake of magnitude 7.2 struck the Port of Kobe. In effect, the port was practically destroyed. After a hazard investigation, researchers reached a consensus to adopt a performance-based design in port and harbor structures in Japan. A residual displacement of geotechnical structures after an earthquake is one of the most important engineering demands in performance-based earthquake-resistant design. Thus, it is essential to provide reliable responses of geotechnical structures after an earthquake through various techniques. Today, a nonlinear explicit response history analysis(NERHA) of geotechnical structures is the most efficient way to achieve this goal. However, verification of the effective stress analysis, including post liquefaction behavior, is difficult to perform at a laboratory scale. This study aims to rigorously verify the NERHA by using well-defined field measurements, existing numerical tools, and constitutive models. The man-made, Port Island, in Kobe provides intensive hazard investigation data, strong motion records of 1995 Kobe earthquake, and sufficient engineering parameters of the soil. Two dimensional numerical analysis was conducted on the caisson quay wall section at Port Island subjected to the 1995 Kobe earthquake. The analysis result matches very well with the hazard investigation data. The NERHA procedure presented in this paper can be used in further studies to explain and examine the effects of other factors on the seismic behavior of gravity quay walls in liquefiable soil areas.

Experimental Study and Evaluation of Tension Stiffening Model in High Strength Concrete Beams (고강도 콘크리트 보에서 Tension Stiffening 모델을 이용한 실험적 연구 및 평가)

  • Shin, Dae Hwan;Jo, Eunsun;Kim, Min Sook;Kim, Heechuel;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.45-53
    • /
    • 2014
  • In strength limit states design, it is assumed that after cracking, reinforcement carries all tension in the tension zone of reinforced concrete members. However, it can be seen the concrete between cracks will contribute to carrying a part of the tension stress in actual concrete members particularly at service load levels, this effect is referred as tension stiffening effect. In this study, tension stiffening models and high strength concrete beam flexural test results were verified through comparison. The relationship between moment-curvature and load-deflection was evaluated by result of tension stiffening model and test result values. The analysis results showed that ACI 318 and Owen & Damjanic generally shows good agreement.

Numerical Study of Turbulent Flow and Combustion in a Micro Combustor with a Baffle Plate (배플이 부착된 마이크로 연소기의 난류유동 및 연소에 대한 수치해석 연구)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • Turbulent flow and combustion characteristics in a micro can combustor with a baffle plate are investigated by a Reynolds Stress Model. In order to examine the geometric effects on the turbulent combusting flow, several baffle configurations are selected. The interrelation between the flow structure and the thermal field are investigated by examing the variation of recirculation region, flame length and heat loss. For the flow mixing, the decreasing air hole is more efficient than the decrease of the fuel hole. As the fuel or air hole diameter decreases, combustion efficiency is enhanced and flame length is decreased. Additionally, as the diameter of air hole decreases, the heat loss and combustion temperature are increased, while they are reduced with decreasing the diameter of fuel hole.