• Title/Summary/Keyword: 응력제어기법

Search Result 37, Processing Time 0.028 seconds

Development of a Technique to Transfer Output from FEM Analysis to VRML Format for the Web Based CAE Information System (Web 기반형 CAE 정보 전달 시스템 구현을 위한 유한 요소 해석 결과의 VRML 변환기술 개발)

  • 황호진;이영석;오재우;박만진;장동영
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.88-95
    • /
    • 2001
  • VR(Virtual Reality)의 개념이 제조공학 분야로 확대 적용되면서 설계분야에서의 가상조형 (Virtual Prototyping), 제조분야에서의 가상제조시스템(Virtual Manufacturing System)이라는 새로운 형태의 제조 시스템 및 설계기술이 차세대 제조기술로서 발전해 오고있으며 이런 가상제조방법(Virtual Manufacturing)은 컴퓨터를 이용하며 생산과정에서 제품뿐만이 아니라 유한요소해석을 유용하여, 공정까지도 모의실험을 하며 생산성(manufacturability), 최종 형태(final shape), 잔류 응력(residual stress), 제품 수명 주기(life-cycle)등과 같은 요소들의 최적화 정보를 제공하게 된다. 본 연구에서는 이러한 가상제조방법을 구현하기 위한 기초적 단계로서 가상단조기계를 가상현실기법을 이용하여 모델링하고 Java를 이용하여 모델링된 단조기계를 제어하고 제조되는 단조물에 대한 내부 응력 및 형태변환을 유한 요소법을 이용하여 분석하고 분석된 단조물의 자료를 WEB상을 통하여 닥 수 있게 유한 요소 해석결과를 VRML언어로 변환하는 작업을 수행하였다.

  • PDF

A Study on Microscopic Deformation Behaviors of $Nb_3Sn$ Superconducting Composite Tape using Acoustic Emission Technique ($Nb_3Sn$ 복합초전도 테이프의 미시적 변형거동 특성평가를 위한 음향방출기법 적용에 관한 연구)

  • 이민래;이준현
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 1999
  • Since the surface diffusion processed $Nb_3Sn$ superconducting tape has the advantage of having large overall critical current density. it is used for the construction of open type MRI superconducting magnets. However one of the disadvantages of this tape is that $Nb_3Sn$ compound often exhibited multiple cracking due to its intrinsic brittleness when subjected to mechanical loading such as bending and winding during the fabrication process for superconducting coil. This will eventually cause the severe degradation of critical current density. Therefore it is important to understand the microscopic deformation behavior of this kind of superconducting tape under the mechanical loading.In this study, acoustic emission(AE) was used to clarify microscopic deformation behavior at room temperature for $Nb_3Sn$ superconducting tape which was strengthened and stabilized with copper. For this purpose, special attention was paid to AE characteristics including AE event, energy, and amplitude distribution which were associated with microscopic mechanism of deformation of $Nb_3Sn$ superconducting tape under tensile load.

  • PDF

A Study on the Stability of Deep Tunnels Considering Brittle Failure Characteristic (취성파괴특성을 고려한 심부터널의 안정성 평가기법 연구)

  • Park, Hyun-Ik;Park, Yeon-Jun;You, Kwang-Ho;Noh, Bong-Kun;Seo, Young-Ho;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.304-317
    • /
    • 2009
  • Most crystalline rocks have much higher compressive strength than tensile strength and show brittle failure. In-situ rock mass, strong enough in general sense, often fails in brittle manner when subjected to high stress exceeding strength in due of geometrically induced stress concentration or of high initial stress. Therefore, it is necessary to verify the brittle failure characteristics of rock and rock mass for proper stability assessment of underground structures excavated in great depths. In this study, damage controlled tests were conducted on biotite-granite and granitic gneiss, which are the two major crystalline rock types in Korea, to obtain the strain dependency characteristics of the cohesion and friction angle. A Cohesion-Weakening Friction-Strengthening (CWFS hereafter) model for each rock type was constructed and a series of compression tests were carried out numerically while varying confining pressures. The same tests were also conducted assuming the rock is Mohr-Coulomb material and results were compared.

가전제품의 제조와 관련된 열공학 문제

  • 이형인;정완진;신승주
    • Journal of the KSME
    • /
    • v.32 no.8
    • /
    • pp.685-690
    • /
    • 1992
  • 가전제품의 제조와 관련된 열공학문제를 몇가지 예를 들어 검토하여 보았다. 제품은 강도가 커야 하고 설계공차 내에 들어야 하는 등의 조건을 만족함과 아울러, 그의 생산공정은 가급적으로 쉬워야 하고 재료를 절감할 수 있어야 한다. 제조공정 중의 열공학적인 과정이 제품 구조내의 열응력분포를 결정지우므로 열전달과정의 세심한 제어가 필요하다. 근래에 들어 컴퓨터의 발달로 열전달과정의 수치해석이 제조장비의 설계와 제조과정의 최적제어의 보조수단으로 등장하고 있다. 실제의 문제에서는 대부분 삼차원형상을 가지고 있고, 시스템을 고려하여야 하므로 여러 가지 현상이 연계되어 있다. 그러므로 수치계산에는 여전히 종래의 실험기법에 의한 실험식들과 여러 가지 축적된 경험의 도움을 필요로 한다. 이러한 측면에서 볼 때, 종래의 실험식, 경험식, 물성치, 기존의 수치해석의 결과 등을 컴퓨터에 데이터베이스(data base)화하여 소위 전문가 시 스템(expert system)을 구축하는 편이 단순히 공정의 극히 일부분 현상들을 수치해석하는 작업 보다 선행되어야 함이 바람직할 수 있다. 또한, 가전제품의 제조에는 열공학 또는 열전달현상에만 따로 주의를 기울이지 말고, 재질의 선택, 그의 유변학(rheology), 구조내의 균열문제 등을 연계 하여 고려하여야 한다.

  • PDF

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.25-36
    • /
    • 2008
  • The plane strain test can reproduce the real field condition and failure behavior precisely over other laboratory shear tests. Accordingly, this test has been utilized to investigate the shearing behaviors associated with overall failure behavior and local deformation of soils. However, most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment and also performing it. This restraint induces different results with real field because of shear stress on end plates. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. And the formation and development of shear band caused by the restrained effect of end plate and the deformation mechanism of sand under plane strain condition were examined.

Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model (입자결합모델을 이용한 횡방향 변형률 제어 하에서의 암석의 일축 및 삼축압축시험의 수치적 모사)

  • Lee, Chang-Soo;Kwon, Sang-Ki;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In this study, Class II behavior of rock failure process under uniaxial and biaxial compression has been numerically simulated using bonded particle model. Class II behavior of rock was simulated by radial strain controlled uniaxial and biaxial compression tests using a suggested method of ISRM. Micro-parameters used in the simulation were determined based on the laboratory uniaxial compression tests carried out at ${\"{A}}sp{\"{o}}$ Hard Rock Laboratory, Sweden. Class II behavior of ${\"{A}}sp{\"{o}}$ rock was effectively simulated using newly proposed numerical technique in this study, and the results of numerical simulations show good similarity with the complete stress-strain curves for Class II behavior obtained from the laboratory tests.

Development of Wall Flow Sensor Using Micro Imaging Device (미세 영상 장치를 이용한 벽면 유동 센서 개발)

  • Lee, Seung Hwan;Kim, Byung Soo;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1217-1222
    • /
    • 2012
  • A wall flow sensor has been used for feedback flow control and wall shear stress measurement. In this study, we developed a new wall flow sensor by combining the PIV algorithm and the micro image sensor used in an optical mouse. The feasibility of the wall flow sensor was investigated by using simulated fluid flow experiments. Compared with the quadrature signal from imaging devices, the accuracy of the wall flow velocity measurement was improved and the dynamic range increased. In addition, the depth information of particles was also measured by using the defocusing imaging technique.

Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-Groove Weld in RPV CRDM Penetration Nozzle (원자로 CRDM 관통노즐 J-Groove 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석)

  • Bae, Hong-Yeol;Kim, Ju-Hee;Kim, Yun-Jae;Oh, Chang-Young;Kim, Ji-Soo;Lee, Sung-Ho;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1115-1130
    • /
    • 2012
  • In nuclear power plants, the reactor pressure vessel (RPV) upper head control rod drive mechanism (CRDM) penetration nozzles are fabricated using J-groove weld geometry. Recently, the incidences of cracking in Alloy 600 CRDM nozzles and their associated welds have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC), and it has been shown to be driven by welding residual stresses and operational stresses in the weld region. The weld-induced residual stress is the main factor contributing to crack growth. Therefore, an exact estimation of the residual stress is important for ensuring reliable operation. This study presents the residual stress computation performed for an RPV CRDM penetration nozzle in Korea. Based on two and three dimensional finite element analyses, the effect of welding variables on the residual stress variation is estimated for sensitivity analysis.

Fatigue Life Prediction of Medical Lift Column utilizing Finite Element Analysis (유한요소해석을 통한 의료용 리프트 칼럼의 피로수명 예측)

  • Cheon, Hee-Jun;Cho, Jin-Rae;Yang, Hee-Jun;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2011
  • Medical lift column controlling the vertical position while supporting heavy eccentric load should have the high fatigue strength as well as the extremely low structural deflection and vibration in order to maintain the positioning accuracy. The lift column driven by a induction motor is generally in a three-step sliding boom structure and exhibits the time-varying stress distribution according to the up-and-down motion. This study is concerned with the numerical prediction of the fatigue strength of the lift column subject to the time-varying stress caused by the up-and-down motion. The stress variation during a motion cycle is obtained by finite element analysis and the fatigue life is predicted making use of Palmgren-miner's rule and S-N curves. In order to secure the numerical analysis reliability, a 3-D FEM, model in which the detailed lift column structure and the fitting parts are fully considered, is generated and the interfaces between lift column and pads are treated by the contact condition.

Development and Application of an Explosion Modeling Technique Using PFC (PFC3D에서의 폭원모델링 기법의 개발 및 적용)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.7-15
    • /
    • 2004
  • An explosion modeling technique was developed by using the spherical discrete element code, PFC3D, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a PFC3D particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). According to this concept, the explosion pressure is applied to the wall particles by the scheme of radius expansion/contraction of inner-hole particles. The output wall force is compared to the input hole pressure in every time step, and a correction routine is activated to control the radius multiplier of the inner-hole particles. A comparative blast simulation far a cement mortar block of $80\times90\times80mm$ was conducted by using the conventional explosion modeling method and the new one. The results of the simulation are presented in a qualitative fashion.