• Title/Summary/Keyword: 응력변형율

Search Result 363, Processing Time 0.025 seconds

Structural Safety Analysis on Car Body at Overturn (전복시 차체에 대한 구조 안전 해석)

  • Cho, Jae-Ung;Kim, Key-Sun;Lee, Eun-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In this study, the changes of displacement and stress are investigated by structural analysis according to the thickness of car body in case of overturn. In case of 5 mm thickness, the maximum displacement of 7.5024 mm at its right ceiling and the maximum equivalent stress of 113.69 MPa at the left lower part are occurred on the elapsed time of 2 second. In case of 10 mm thickness, the maximum displacement of 1.2557 mm at its right ceiling and the maximum equivalent stress of 15.134 MPa at the left lower part are occurred on the elapsed time of 2 second. In case of 15 mm thickness, the maximum displacement of 0.426067 mm at its right ceiling and the maximum equivalent stress of 4.4842 MPa at the left lower part are occurred on the elapsed time of 2 second. As stress and displacement are uniformly distributed according to time in this case, the design of car body can be stabilized.

The Determination of Required Tensile Strength of Geosynthetic Reinforcements for Embankment on Soft Ground (연약지반 보강성토에서 섬유보강재 소요인장강도의 결정)

  • 이광열;황재홍;구태곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.379-385
    • /
    • 2003
  • In the existing method to design geosynthetic reinforced embankment, the required strength of reinforcements is determined by vertical stress only rather than strain. This strength is not in accord with tensile strength that behaves as reinforcement in earth structures. The reinforcement and adjacent soil on the failure plan behave in one unit at the initial stress phase but they make a gap in strain as stress increases. This issue may cause a big impact as a critical factor on geosynthetic reinforcement design in earth structures. The quantitative analysis on strain behavior was performed with a PET Mat reinforced embankment on soft ground. From this study, several outstanding discussions are found that tensile strength of reinforcement governs the failure of embankment when the soil stress is greater than failure stress. Also the optimum required tensile strength of geosynthetic reinforcement(Tos) should be determined by stress, displacement, displacement gap and safety factor of soil-PET Mat at the location of PET Mat.

Impact Analysis According to Material of Hand Phone (휴대폰 재질에 따른 충격 해석)

  • Cho, Jae-Ung;Min, Byoung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.69-75
    • /
    • 2009
  • This study is analyzed by impact simulation according to material property at terminal case of hand phone. Maximum equivalent stress or strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest stress or strain is shown at aluminium alloy. The value of maximum equivalent stress is shown as 6.5 Mpa in case of plastic, magnesium alloy and aluminium alloy. Maximum shear strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest strain is shown at aluminium alloy. The value of deformation or strain at magnesium alloy and aluminium alloy is not different.

  • PDF

Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil (지오그리드 혼합 보강경량토의 압축강도특성 연구)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.37-44
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil was strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the compressive strength of reinforced lightweight soil increased reinforcing effect by the geogrid for most cases. Stress-strain relation of geogrid mixing reinforced lightweight soil showed a ductile behavior rather than a brittle behavior. In reinforced lightweight soil, secant modulus ($E_{50}$) also increased as its compressive strength increased due to the inclusion of geogrid.

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

The Stress-Strain Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 응력(應力)-변형특성(變形特性))

  • Min, Jeong Ki;Kim, Seong Wan;Sung, Chan Yong;Kim, Kyung Tae
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.120-130
    • /
    • 1996
  • Concrete is the most commonly used structural materials, but in concrete construction, its self-weight represents a very large proportion of the total load on the structure, and there are clearly considerable advantages in reducing the density of concrete. This study was carried out to investigate the stress-strain properties of no-fines synthetic lightweight concrete with synthetic lightweight coarse aggregates. The used synthetic lightweight coarse aggregate were two types, one was expanded clay with grading 3~8mm, the other is pumice stone with grading 4.75~10mm. The results of this study were summarized as follows ; The static modulus of elasticity of the synthetic lightweight concrete was $1.8{\times}10^5kg/cm^2$ at type CE using the expanded clay and $1.6{\times}10^5kg/cm^2$ at type CL using the pumice stone. The dynamic modulus of elasticity was $1.9{\times}10^5kg/cm^2$(CE) and $2.0{\times}10^5kg/cm^2$(CL). The dynamic modulus of elasticity was 10~30% larger than that of the static modulus of elasticity. The load-time curves of synthetic lightweight concrete were shown approximately similar to each other type except for added foaming agent. The stress-strain curves in uniaxial compressive of synthetic lightweight concrete were similar to each other.

  • PDF

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.

Micromechanical Analysis for Transverse Properties of Ceramic/Metal Composite (세라믹/금속기지 복합재료의 특성예측을 위한 미시역학적 유한요소해석)

  • 김태우;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.575-581
    • /
    • 2001
  • 세라믹/금속기지 복합재료에서 횡방향의 단축인장하중을 받는 경우, 복합재료의 특성에 관한 시뮬레이션 결과이다. 세라믹과 금속기지간 계면에 강한 결합이 존재하는 복합재와, 계면에서의 결합이 약한 복합재의 두 경우에 대하여 횡방향 평균응력과 평균변형율에 대한 관계를 계산하였다. 복합재료의 미시역학적개념과 유한요소해석법을 적용하여 세라믹체적분율의 변화에 따라 각기 해석되었다. 본 연구에서 계산된 횡방향 탄성계수는 문헌에 알려져 있는 미시역학개념으로 유도된 식에 의한 횡방향탄성계수값과 잘 일치되었다. 계면에서 강한 결합이 있는 복합재와는 달리, 약한 결합의 복합재는 인장하중에 의하여 세라믹/금속계면에서 금속재료와 세라믹간의 분리가 발생된다. 이 분리는 전체복합재의 강성을 감소시키며, 금속의 부피분율이 감소될수록 (즉, 세라믹의 부피분율이 증가할수록) 횡방향 평균응력의 평균변형율에 대한 감소로 나타났다. 미시역학의 개념을 적용한 유한요소해석기법을 통하여, 이미 알고 있는 복합재 각 성분의 특성으로부터 복합재료의 계면특성과 횡방향특성을 예측할 수 있다.

  • PDF

Analysis of True Stress - True Strain Relations through the Modeling of Ball Indentation Test (압입시험 모델링을 통한 진응력-진변형율 관계 해석)

  • Lee, Ho-Jin;Kim, Ki-Baik;Lee, Bong-Sang;Lee, Byung-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.660-665
    • /
    • 2003
  • The true stress - true strain relation of SA508 steel was evaluated with analytical and experimental equation on the base of the indentation load-depth curve obtained from the modeling of ball indentation test. The evaluated relation between true stress and true strain is agreed well with that of SA508 teel defined in the modeling. The distribution of effective stress along the center axis of indentation depth was calculated with Tresca criteria in the modeling. The representative strain, which are defined in this study as the corresponding strains obtained from the maximum effective stress, have a linear relation with the true strain. The true stress - true strain relation of austenitic stainless steel was evaluated by the modeling of ball indentation test to verify the case of A508 steel.

  • PDF

동맥의 생체공학적 특성

  • 황민철
    • 전기의세계
    • /
    • v.45 no.8
    • /
    • pp.25-29
    • /
    • 1996
  • 동맥에 대한 기계 역학적인 연구역사는 30년에 이르고 있다. 그 연구 성과로 말미암아 동맥의 물성 파악, 동맥의 인조화, 동맥의 의학적인 시술에 대한 공학적인 평가 분석 및 제안, 동맥의 생리학적인 현상에 대한 이해 보강, 병리 현상의 공학적인 분석 및 예고, 공학적인 현상과 조직학적인 현상에 대한 연관성 파악 및 응용등, 많은 공헌을 하고 있다. 동맥에 대한 공학적인 연구학문을 동맥역학(Arterial Mechanics)이라 한다. 동맥역학의 궁극적 분석겨로가는 동맥에 대한 물성과 혈압으로 인한 변형율과 응력에 관한 것이다. 동맥의 물성 파악은 혈류와 Mass Transport의 효과로 인한 동맥의 질병양태에 대한 해석을 돕고 있다. 또한 동맥의 병리현상과 생리현상을 이해하는 데에 변형율과 응력 분포도가 중요한 요소로 역할을 하고 있다. 동맥의 연구 방법론적 고찰의 내용은 실험이나 데이터 분석방법이 비슷하기 때문에 동맥 외의 인체의 soft tissue(피부, 심장, 근육, 눈등)에 대한 연구고찰이라고도 할 수 있다. 본 논문은 현재까지 진행된 주요한 연구를 고찰하고 동맥 역학에 대한 관심과 인식을 고취시키는 데에 그 목적이 있다.

  • PDF