• Title/Summary/Keyword: 응고해석

Search Result 158, Processing Time 0.027 seconds

Simulation by heat transfer of ADS process for large sized polycrystalline silicon ingot growth (대형 다결정 실리콘 잉곳 성장을 위한 ADS 법의 열유동에 관한 공정모사)

  • Shur, J.W.;Hwang, J.H.;Kim, Y.J.;Moon, S.J.;So, W.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • The development of manufacturing process of silicon (Si) ingots is one of the important issues to the growth of the photovoltaic industry. Polycrystalline Si wafers shares more than 60% of the photovoltaic market due to its cost advantage compared to mono crystalline silicon wafers. Several solidification processes have been developed by industry including casting, heat exchange method (HEM) and electromagnetic casting. In this paper, the advanced directional solidification (ADS) method is used to growth of large sized polycrystalline Si ingot. This method has the advantages of the small heat loss, short cycle time and efficient directional solidification. The numerical simulation of the process is applied using a fluid dynamics model to simulate the temperature distribution. The results of simulations are confirmed efficient directional solidification to the growth of large sized polycrystalline Si ingot above 240 kg.

유한요소법을 이용한 축대칭 주조의 응고 및 변형공정 해석

  • 구본영;금영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.337-341
    • /
    • 1997
  • The purpare of this research is to develope a FEM program for analyzing solidification processes of axisymmetic casting, considering phase changes and the contact between the metal and mold. Temperture recovery method is employed for considering the phase changes releasing the latent heat. A gap element is employed for modeling the interface between the model and metal in finding deformed shapes. In order to verify the developed program, an axisymmetric aluminum casting processes is simulated. Temperature distribution, phase front position, and shrinkaga and porosity creation are compared with measurement, FIDAP results, and ANSYS results, and good agreements are examined.

건습식방사법에 의한 폴리설폰 중공사막의 구조 및 투과특성에 관한 연구

  • 김정훈;박유인;노일준;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.33-33
    • /
    • 1993
  • 건습식방사법에 의한 폴리설폰중공사를 제조함에 있어 여러가지의 방사조건을 변화시켜 이에 따른 중공사의 다양한 구조를 검토하고 이들의 투과특성을 조사하였다. 본 연구에서는 이러한 문제점을 인식하고 Polysulfone 중공사막의 제조시 여러가지의 방사조건을 세분하여 방사높이, 방사용액 및 내부응고제의 양의 변화등의 방사변수에 따른 구조 및 투과특성 그리고 내부스킨층만이 존재하는 중공사와 외부스킨층만이 존재하는 중공사를 제조할 수 있는 특정조건을 확립한 후 이들의 상전이공정에 따른 변수를 도입하여 중공사를 제조하여 그 투과성능을 상전이공정과 연결시켜 해석하였다.

  • PDF

Finite Element Analysis for Forging Processes of Rapidly Solidified Al-Si Alloys (급속응고 Al-Si계 합금의 단조공정에 대한 유한요소 해석)

  • 손현택
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The densification behaviors of rapidly solidified Al-Si alloys under high temperature processing were investigated. In general, it was difficult to establish optimum process variables for forging condition through experimentation, because this was costly and time consuming. In this paper, to overcome these problems, we compared the experimental result to the finite element analysis for forging processes of rapidly solidified Al-Si alloys. The results of these simulations helped understand the distribution of relative density during various forging processes. This information is expected to assist in improving rapidly solidified Al-Si alloys forging operations.

  • PDF

Experimental Study of Flow and Solidification Simulation for Thin Wall Stainless Steel Castings (박육 스테인리스 주강에 대한 유동 및 응고해석의 실험적 고찰)

  • Choi, Hak-Kyu;Park, Heung-Il;Jeong, Hae-Yong;Bae, Cha-Hurn;Choi, Byung-Kang
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.344-353
    • /
    • 2000
  • In order to find out the casting conditions of the thin wall stainless steel exhaust manifold for automobile, the melt flow and solidification behavior simulated by the Z-CAST program were evaluated, and experimental casting result on the test casting and exhaust manifold of SSC13 alloy were investigated. From the results of this study, it was shown that the calculated results on fluid flow were in good agreement with practical thin wall test castings under the same casting conditions, as pouring metal is austenitic stainless steel(SSC13) and pouring temperature is 1575, 1630, and $1665^{\circ}C$ respectively. That calculated result with designed thin wall exhaust manifold was predicted filling up into the mold cavity, and practical casting was sound. The solidification simulation was predicted shrinkages at the bosses for original exhaust manifold, and designed it without bosses was predicted no defect. Therefore practical exhaust manifold casting was sound and in good agreement with calculated solidification results.

  • PDF

Three Dimensional Solidification Analysis in Large Steel Castings by Modified Finite Difference Method (개량차분법에 의한 대형주강품의 3차원 응고해석)

  • Yoo, Seung-Mog;Lee, Doo-Ho;Kim, Jong-Ki;So, Chan-Young;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1991
  • A computer program which consists of pre-processor, main solidification simulator and post-processor has been developed for three dimensional solidification analysis of steel castings. The pre-processor is used for mesh generation in a small personal computing system. The modified finite difference method is adopted for the main solidification simulation algorithm. The post -processor graphically presents the simulation results and shows the formation of shrinkage defects. Several experiments on large steel castings in sand mold were carried out. The temperature variations in casting and mold with time are measured experimentally, and the results are compared with calculation results. Several numerical examples for the prediction of shrinkage cavity in large steel casting of SC42 and SCNCrM2 alloys are compared with experimental results. The effect of sleeve and chills on solidification patterns are also studied. Formation of shrinkage defects for the three cases of experimental castings are relatively well predicted by present model.

  • PDF

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

Three Dimensional Solidification Analysis in Automotive Cast Piston (자동차용 피스톤 주물의 3차원 응고해석)

  • Kim, Ji-Joon;Kim, Jin-Soo;Ryu, Gwan-Ho;Choi, Jeong-Kil;Lee, Zin-Hyoung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.268-275
    • /
    • 1993
  • In gravity die casting, die cooling systems are frequently employed with water cooling to remove the heat of the solidifying metal. Thermal modeling is an important technique in mold design for improving the productivity of the process. Computer simulation system which consists of pre-processor, main solidification simulator and post-processor has been developed for three dimensional solidification analysis of cyclic gravity die casting. The pre-processor is used for mesh generation in a PC system. The modified finite difference method is adopted for the main solidification simulation algorithm during all the casting cycles. The post-processor graphically presents the simulation results. Several experiments in automotive cast piston were carried out. The temperature variations in casting and mold with time are measured experimentally, and the results are compared with calculation results. The effects of cycle number on solidification pattern are also studied. Several experimental results for the prediction of shrinkage defects are compared with calculated results.

  • PDF

An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해)

  • Chung, Jae-Dong;Yoo, Ho-Seon;Choi, Man-Soo;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Solidification Analysis Characteristics of Back Flow Prevention Check Valve (역류방지 체크밸브의 응고해석 특성)

  • Yoon, Jung-In;Moon, Jung-Hyun;Son, Chang-Hyo;Lee, Jung-Jin
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2015
  • Check valves used in vessels include shock-release function on piping system, aside from basic back flow prevention. However, proper and enough protection of system is not obtainable due to use of high-pressure and bulk fluids, resulting from enlargement of vessels. In this study, casting analysis of check valves protecting systems in flow path from water hammering or back flow is conducted, using Z-CAST program. Also, molten metal filling, flow analysis, solidification analysis and shrinkage cavity analysis are conducted. The main results are as following. Regarding filling of each risering, molten metal showed stable supply condition without being isolated. It was identified that the final solidification exists on risering, but shrinkage cavity possibly might happens at the point of isolation solidification.