• Title/Summary/Keyword: 응고온도

Search Result 188, Processing Time 0.024 seconds

Indoor Air Temperature Distribution in a Floor Heating Space with PCM Panels (잠열저장패널이용 바닥난방공간의 실내온도분포에 관한 연구)

  • Cho, Soo;Sohn, Jang-Yeul
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.59-71
    • /
    • 1992
  • The purposes of the present study are to investigate the characteristics of heat storage and emission of the PCM($CalCl_2{\cdot}6H_2O$) panel, and to analyze the distribution of indoor air temperature in a floor heating space with PCM panels for the heating system. Two identical unit test cells sized $1.8m^W{\times}1.8m^L{\times}1.8m^H$ were built and installed with specially designed aluminium Ondol-panels. It held 1.2kg of calcium chloride hexahydrate(CCH). It was found that PCM panels could reduce the indoor air temperature fluctuations and maintain the phase changing temperature for considerably long duration, $2{\sim}3$ times longer in heating hour over no-CCH one. When the elapsed time was 6 hours, the average temperature difference between PCM panel and Ondol panel was $7.7^{\circ}C$.

  • PDF

A Study on the Intervertebral Disc Temperature Distribution During Electrothermal Therapy (추간판의 전기열치료시 온도분포에 관한 연구)

  • 진의덕;탁계래;구자중;김한성;이성재;이정한
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • The prevalence of discogenic pain among patients with chronic low back pain is estimated to be about 40%. Lumbar discectomy is being performed as a treatment according to the studies done so far. Recently IDET- Intradiscal electrothermal therapy which is minimally invasive technique is being introduced. This study will investigate important factors of this procedure such as the temperature of heat source, loading times, and the temperature distribution within the intervertebral disc. This study utilized finite element analysis and experiment. It was able to analyze the temperature range of inner intervertebral disc by two mechanisms which are known to alleviate pain clinically. As a result, verification of temperature distribution to 15.6mm($\geq$45$^{\circ}C$) (Mechanism 1-coagulation inner annulus by heat) and 9mm($\geq$6$0^{\circ}C$) (Mechanism 2- contraction inner nucleus by heat) from the heat source was done.

Studies on Heat Stability of Egg Albumen Gel 1. Effects of Heating Time and Temperature, PH and NaCl Concentration on Heat Stability of Egg Albumen Gel (난백겔의 열안정성에 관한 연구 1, 가열온도와 시간, pH 및 NaCl농도가 난백겔의 열안정성에 미치는 영향)

  • 유익종;김창한;한석현;송계원
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • This study was undertaken to find out the effect of heating time and temperature, pH and NaCl concentration on the heat stability of egg albumen gel during heat treatment. With the transient decrease at 110-$130^{\circ}C$, hardness of heat-set albumen gel was increased as the heating temperature increased. The cohesiveness showed similar trend as well. The lightness was decreased while the yellowness was increased as the heating time and temperature increased. Heat-set albumen gel showed maximum hardness at pH 4.5-5.0 and pH 9.0 High heat treatment($120^{\circ}C$, 30min) showed higher hardness at alkaline range compared to low heat treatment($96^{\circ}C$, 30min.). Color of the albumen gel was relatively dark at acidic range and bright at alkaline range. High heat treatment caused darker albumen gel at alkaline range and brighter albumen gel at acidic range. The addition of NaCl increased hardness and cohesiveness of the albumen gel and improved the lightness after high heat treatment regardless of NaCl concentration.

  • PDF

An Investigation on the Magnetic Properties of Melt-Spun Fe-Pr-C Alloys (Melt-Spun Fe-Pr-C 합금의 자기적 특성 조사)

  • 장태석;조대형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.173-179
    • /
    • 1997
  • Change in phases, microstructures, and magnetic properties by the variation of quench rate and heat treatment were investigated for melt-spun $Fe_{77}Pr_{15}C_8$ ribbons. The amorphization of as-spun ribbons increased as the quench rate increased. As a result, the ribbon quenched at 40 m/s was almost entirely amorphous. Similarly to cast alloys, the primary phase in crystalline ribbons quenched at 10 m/s was $\alpha$-Fe followed by the secondary $Fe_{17}Pr_2C_x$. Crystalline phases were still dominant in the ribbon spun at 20 m/s, but in this case crystallization of $Fe_{17}Pr_2C_x$ was remarkable with a little suppression of $\alpha$-Fe. At 30 m/s an amorphous phase obviously dominated in the as-spun ribbons with small fraction of crystals. Therefore, substantial amount of hard magnetic $Fe_{14}Pr_2C$ was not obtained from the as-spun state but, as in cast alloys, produced only by a solid-state transformation. Within a few minutes fine grains of $Fe_{14}Pr_2C$ were easily obtained at relatively low temperature when the degree of amorphization of as-spun ribbons was higher. The grain size of $Fe_{14}Pr_2C$ was well less than 1${\mu}{\textrm}{m}$. The ribbons quenched at 20 or 30 m/s yielded higher coercivities after heat treatment.

  • PDF

Finite Element Analysis of Solidification Process Using the Temperature-Enthalpy Relationship (온도-엔탈피 관계를 이용한 응고과정의 유한요소 해석)

  • Cho, Seong Soo;Ha, Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1213-1222
    • /
    • 1999
  • A finite element method is developed for calculating the temperature and enthalpy distribution and accordingly the solid, liquid and mushy zone in a three-dimensional body subjected to any heat boundary conditions. The method concurrently consider both temperature and enthalpy for consideration of the latent heat effect, differently from other methods of using a special energy balance equation for solving a mushy zone. The developed brick element has eight nodes with one degree of freedom at each node. The numerical method and procedure are verified using the results of one and two dimensional analytic solutions and by other researchers. It is shown that the present method presents a consistent and stable results in either abrupt or ranged phase change problems. Moreover, the numerical results by the present method are hardly effected by the calculation time steps which otherwise are difficult to determine in most phase change problems. Finally, as a three-dimensional application, a T-shaped body of a phase change is presented and the temperature and enthalpy variation along the time are solved.

The effect of sigma phases formation depending on Cr/Ni equivalent ratio in AISI 316L austenitic stainless steel weldments. (AISI 316L 용접부의 시그마상 형성에 영향을 미치는 크롬/니켈 당량비)

  • Kim, Y.H.;Jang, A.Y.;Choi, C.H.;Kang, D.H.;Jeon, J.H.;Byun, J.C.;Jung, G.H.;Lee, S.H.;Lee, H.W.
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.21-21
    • /
    • 2010
  • AISI 316L 용접금속의 크롬/니켈 당량비에 따른 시그마상의 영향을 알아보기 위하여 응고모드가 다른 3종류의 플럭스 코어드 와이어를 제작하였다. AISI 316L 시편에 FCAW 프로세스를 적용한 용접재를 $650^{\circ}C$, $750^{\circ}C$, $850^{\circ}C$, $950^{\circ}C$에서 각 각 1H, 5H, 24H, 72H동안 열처리하였다. 크롬/니켈 당량비가 높을수록 즉, 크롬의 함량이 높아질수록 $\delta$-페라이트 함량은 증가하였으며, $\delta$-페라이트는 고온에서 시그마상으로 변태되었다. $\delta$-페라이트는 $650^{\circ}C$에서 가장 느리게 분해되었으며 $850^{\circ}C$에서 가장 활발히 분해되었다. 용접부의 특성상 크롬과 니켈 등의 합금원소에 의하여 응고온도범위가 넓어져 $950^{\circ}C$에서도 시그마상이 석출되었으며, 5시간 이상 유지 시 구형으로 존재하였다. 충격시험 시 시그마상에 의해 취약해진 inter-dendrite 를 따라 파면이 형성되었으며, $-100^{\circ}C$이하의 극저온에서는 시그마상의 양과 무관하게 충격흡수에너지는 0에 가까워졌다. 하지만 3%미만의 $\delta$-페라이트를 함유하는 AF모드에서 발생한 DDC와 미량의 시그마상은 충격흡수에너지에 결정적인 영향을 미치지 않았다.

  • PDF

The Properties and Processing of Bismuth and Indium Added Sn-Cu-Ni Solder Alloy System (Bi, In을 함유한 Sn-Cu-Ni계 솔더 합금 제조와 물성)

  • 박종원;최정철;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • Bismuth and Indium added Sn-Cu-Ni solder alloy was investigated for a new lead free solder. The thermal, electrical and mechanical properties were characterized for the Sn-0.7%(Cu+Ni) solder alloy by adding 2~5% Bi and 2~ 10% In. The melting point of solder alloy was in range of 200 to $222^{\circ}C$ and the mushy zone was in range of 20 to $37^{\circ}C$. This alloys could be adapted to middle and high temperature solder materials. A new solder alloy composition. Sn-0.7%(Cu+Ni) -3.5%Bi-2%In is very promising with high performance and effective cost. The melting point was $220^{\circ}C$, the mushy zone range was $25^{\circ}C$, and mechanical, electrical and wetting properties were competitive with those of other lead-free solder except the lower elongation value.

  • PDF

Influence of Soybean Storage Condition on Soybean Curd Quality (대두(大豆) 저장조건(貯藏條件)이 두부품질(品質)에 미치는 영향(影響))

  • Chang, Hak-Gil;Yoo, Yang-Ja;Han, Myung-Kyoo
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.382-386
    • /
    • 1987
  • Changes of proteins of whole soybean and soy flour stored under different conditions of humidity (RH 65% and 85%) and packing material (HDPE and OPP/Al/PE film) for 90 days and their influence on formation of soybean curd were investigated. The water holding capacity, total nitrogen, soluble nitrogen, pH and Amylograph viscosity of whole soybean and soy flour were rapidly decreased during storage at high relative humidity. Furthermore, such quality changes were accompanied by considerable differences in final quality of soybean curds; lower volumes of soybean curds. Under the conditions of HDPE and OPP/Al/PE film packing, smaller changes were observed in protein qualify than those without packing.

  • PDF

Investigation of Gas Evolution in Shell Cores during Casting Processes of Aluminum Alloys (알루미늄 합금 주조공정의 쉘 코아 가스 발생 전산모사 연구)

  • In-Sung Cho;Jeong-Ho Nam;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.187-193
    • /
    • 2023
  • Shell core making is an excellent process in terms of formability and desanding, but when the molten aluminum comes into con- tact with the shell core, gas generation by pyrolysis of the resin is inevitable. In addition, when the ventilation is inadequate, pores will remain inside the casting, which can directly lead to defects of the casting. While studies on the gas generation behavior of shell core making have been reported, the modeling of gas generation has not been extensively investigated. We will develop a gas evolution analysis method that considers the relationship between temperature and gas quantity for the core to be developed. We then use the developed method to analyze the flow and solidification behavior of metal molten metal during core mold design and low-pressure casting of cylinder head products, and predict the occurrence of casting defects to derive a casting method that min- imizes the occurrence of defects.

Effects of the Furnace Temperature on the Growth Behavior of Directionally Solidified Al-Cu-Mg Alloy (Al-Cu-Mg합금의 일방향응고시 로온도에 따른 응고거동변화)

  • Moon, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.545-551
    • /
    • 1997
  • 14 cm length Al-15Cu-1Mg alloys have been directionally solidified in 3 mm diameter alumina tubes in a furnace moved with a constant velocity V=12 cm/hr under various furnace temperatures of 660, 710 and $760^{\circ}C$. By analysing the evolution of the temperature profiles along the alloy length during the solidification, the growth characteristics such as the position of the solid/liquid interface, the local growth velocity (R) and the temperature gradient at the solid/liquid interface (G) have been determined. The effects of the furnace temperature on the growth behavior have been investigated by the comparison of R and G values for each temperature. Under the furnace temperature of $760^{\circ}C$, steady state growth region was observed for the latter half of the growth period.

  • PDF