• Title/Summary/Keyword: 응결지연제

Search Result 42, Processing Time 0.017 seconds

Experimental studies on the characteristics of the mortar using dispersing agent of cement and high fluid admxiture (시멘트 분산제(分産劑) 및 고류동화제(高流動化劑)를 사용(使用)한 모르터의 제(諸) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Park, In-Gyu
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.146-159
    • /
    • 1984
  • This study was the contrast of the compressive strength, the tensile strength, the reducing ratio and the flow of mortar using dispersing agent and high fluid admix. 1. The admix ratio of chemical admixtures espressing maximum strength appeared the same result high fluid admix SP was 0.6%, the dispersing agents LG and C211 were 0.2%, SK was 0.3%, C376 was 0.5%. But two or three times more than standard quantity made the strength's fast lowness, which influenced bad to wateriness and retard the soli-dification. 2. When proper quantity of chemical admixture was used, the increment of compressive strength was as follows. High fluid admix SP was 40.7% and the average increasing rate of dispersing agents(C211 was 19.5%, LG was 19.1%, C376 was 17.9%) was 18.7% more than normal mortar in the codition of 7 days. Also, in the condition of 28 days, high fluid admix SP was about 24.4% and the average of dispersing agents(LG was 21.1%, C211 was 16.4%, SK was 11.1%, C376 was 7.6%) was 14.1%. 3. When proper quantity of chemical admixture was used, the increment of tensile strength was as follows. High fluid admixture SP was 26.6% and the average increasing agents(SK was 16.0%, C376 was 14.7%, LG was 10%, C211 was 5.8%) was 11.6%. Also, in the condition of 28 days, high fluid admix SP was 16.5% and the average increasing rate of dispersing agents(LG was 19.1%, SK was 10.6%, C211 was 10.1%, C376 was 8.7%) was 12.1%. 4. As for the reducing ratio of each dispersing agent, he flow of mortar was less than the slump of concrete. That is; the reducing ratio of concrete was 15% adding each dispersing agent, but the reducing ratio of mortar was in the range of from 5.8% to 13.5% in 1 : 1 mixture, from 7.6% to 14.2% in 1 : 2, from 9.5% to 18.8% in 1 : 3. 5. The fluidity of each chemical admixture was as follows. High fluid admix SP in the condition of 1: 1 and 1 : 2 showed the best result than other dispersing agent and 1 : 3 showed the same result like other agents. Therefore these good dispersing agents were suitable in the prepact concrete construction using intrusion mortar.

  • PDF

A Study on the Properties of Recycled Concrete Using Recycled Fine Aggregates with different Removal formulas of Powder In Aggregate (미분 제거방식이 다른 2종의 재생 잔골재가 콘크리트외 특성에 미치는 영향)

  • Lee Mun-Hwan;Lee Sea-Hyun;Shim Jong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.95-104
    • /
    • 2005
  • The research conducted to study the potential practicability of recycled aggregate concrete by analyzing the characteristics of concretes made of recycled quality aggregates produced by wet and dry process has found the following results. The air content of recycled aggregate concrete increased with increase of the substitut on rate due to mortar included while producing recycled aggregates. However, the concretes with aggregate produced by dry process had relatively low rate of increase in air content. The slump showed generally decreasing trend as the substitution rate of recycled aggregate increased regardless of the wet or dry process. It was assumed that the mortar particles remained in recycled aggregate absorbed the surplus hydration in concrete and decreased fluidity The compressive strength generally decreased as the substitution rate of recycled aggregate increased, however there was an increasing trend as well due to decreasing effect of water-cement ratio when the substitution rate of recycled aggregate reached 25, 50% after mix. This phenomena also appeared in early age, which meant that recycled aggregate concrete should not be retarded in setting when applied in the field. The tensile strength also reached the maximum when wet or dry recycled aggregate replaced with 25%. To conclude, recycled aggregates for concrete produced by wet or dry process are expected to demonstrate essential characteristics of concrete without significant decline in physical or dynamic quality when the substitution rate is below 25% although there are variations subject to water-cement ratio. However, slight differences are expected due to types of recycled aggregate and physical quality.