• Title/Summary/Keyword: 음향 탐지 성능 분포도

Search Result 9, Processing Time 0.023 seconds

Estimation of underwater acoustic uncertainty based on the ocean experimental data measured in the East Sea and its application to predict sonar detection probability (동해 해역에서 측정된 해상실험 데이터 기반의 수중음향 불확정성 추정 및 소나 탐지확률 예측)

  • Dae Hyeok Lee;Wonjun Yang;Ji Seop Kim;Hoseok Sul;Jee Woong Choi;Su-Uk Son
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.285-292
    • /
    • 2024
  • When calculating sonar detection probability, underwater acoustic uncertainty is assumed to be normal distributed with a standard deviation of 8 dB to 9 dB. However, due to the variability in experimental areas and ocean environmental conditions, predicting detection performance requires accounting for underwater acoustic uncertainty based on ocean experimental data. In this study, underwater acoustic uncertainty was determined using measured mid-frequency (2.3 kHz, 3 kHz) noise level and transmission loss data collected in the shallow water of the East Sea. After calculating the predictable probability of detection reflecting underwater acoustic uncertainty based on ocean experimental data, we compared it with the conventional detection probability results, as well as the predictable probability of detection results considering the uncertainty of the Rayleigh distribution and a negatively skewed distribution. As a result, we confirmed that differences in the detection area occur depending on each underwater acoustic uncertainty.

Optimal Search Pattern of Ships based on Performance Surface (음향 탐지 성능 분포도 기반에서 함정 최적탐색패턴에 관한 연구)

  • Cheon, Minki;Kim, Sunhyo;Choi, Jee Woong;Choi, Cheolwoo;Son, Su-Uk;Park, Joungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.328-336
    • /
    • 2017
  • The goal of this study is simulation of optimal search pattern of ships based on performance surface which are reflected underwater environmental. The process is as follows. First, temporal and spatial environmental database are extracted in complex environment and input hull mounted SONAR system parameters. The environmental database and SONAR system parameters are substituted to SONAR equations, and calculate signal excess, detection probability, detection range. And then, the performance surface, which can be used to provide operational insight of SONAR detection performance, are pictorialized. Finally, optimal search pattern of ships are simulated using genetic algorithm based on performance surface. And then, we certify optimal search pattern in various ways.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.

Performance Prediction Techniques of Linear Array Sonar by Merging Data of Real Time and Data Base (실시간 해양정보와 DB정보의 융합을 통한 선배열소나의 성능예측기법 연구)

  • Na Young-Nam;Chang Duck-Hong;Jurng Mun-Sub;Choi Jin-Hyuk;Shim Taebo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.299-304
    • /
    • 1999
  • 시, 공간적으로 변하는 해양환경에서 선배열 소나의 성능예측 정보를 추출하기 위해서는 정밀 해양 DB (Data Base)와 함께 현장에서 실시간으로 측정한 해양자료의 연동이 필수적이다. 이러한 실시간 정보와 DB 정보를 융합하여 얻을 수 있는 정보들로는 전술적 운용상황, 근거리 환경소음 분포, 전파손실/탐지확률 분포, 그리고 음파의 전파 경로 등이 있다. 소나 운용자는 이들 정보로부터 최종적으로 전술상황을 판단함과 동시에 소나의 최적 운용 수심 및 방향을 권고할 수 있다. 국과연에서는 이러한 정보를 획득하기 위하여 음탐환경분석 S/W를 개발하였으며, 수차례의 해상시험을 통하여 그 성능을 검증하였다. 본 논문에서는 실시간 해양정보와 DB정보의 융합을 통하여 선배열 소나의 핵심 성능예측 기법인 전파손실/탐지확률 계산과 근거리 환경소음 계산을 수행하는 알고리즘을 제시한다. 아울러 S/W로 구현된 이들 기법들의 해상시험 결과도 제시하고자 한다.

  • PDF

Self-noise Cancellation in the Passive Sonar System (수동 소나 시스템에서 자체 잡음 제거)

  • 박상택
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.117-121
    • /
    • 1991
  • 본 논문은 견인선(tow-ship)에서 발생하는 자체 잡음을 제거하여 수중 신호처리 시스템에서 표적 탐지(target detection)와 표적 식별(target identification) 등의 성능 향상을 위하여 표적 방향으로 형성된 빔의 출력을 원시 입력신호(primary input)로 사용하고 견인선 방향으로 형성된 빔의 출력을 참고 입력신호(reference input)로 사용한 적응 잡음 제거기(adaptive noise canceller)에 대해 연구하였다. 잡음 제거를 위해 사용되는 계수들은 LMS(Least Mean Square) 알고리듬을 이용하여 조정하였다. 컴퓨터 시뮬레이션을 통하여 TDL(Tapped-Delay Line) 구조와 LAT(LATtice) 구조를 갖는 적응 잡음 제거기 성능을 여러 가지 환경에서 비교, 관찰하였다. 두 알고리듬을 사용할 경우, 자체 잡음이 어떠한 형태로 나타나더라도 제거시킬 수 있음을 보여 주었으나 고유값 분포율(eigenvalue spread ratio)이 큰 경우에는 LMS-LAT가 LMS-TDL보다 수렴 속도뿐만 아니라 성능면에서도 우수함을 보였다.

  • PDF

An Acoustic Reception Ability Analysis of SONAR Multilayer Structures by Using Elastic Theory (탄성이론을 이용한 소나 다층구조물의 음향 수신 성능해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Sung-Hee;Jeon, Jae-Jin;Seo, Young-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SONAR detection performance is one of the key survivability factors in underwater weapon systems. In order to catch the acoustic ability of SONAR, multilayer SONAR structures are analyzed using the elastic theory. The applied results for the simple models are compared with those from commercial program, ANSYS, and the reliable results are obtained. The analysis of sound pressure level (SPL) and echo reduction (ER) by the thickness change of multilayer SONAR structures are performed using the verified elastic theory. As the thickness of anechoic layer is increased, SPL is distributed evenly and ER is increased slightly with the frequency. In decoupling layers and steel layers, SPL are hardly changed and ER is slightly decreased with the thickness increase of those layers. SPL and ER are not affected by the thickness change of the carbon reinforced plastic (CRP) layer. Therefore, to improve the acoustic ability of multilayer SONAR structures, the thickness increase of the anechoic layer and minimization of the decoupling layer, steel layer and CRP layer are desirable.

Analysis of statistical characteristics of bistatic reverberation in the east sea (동해 해역에서 양상태 잔향음 통계적 특징 분석)

  • Yeom, Su-Hyeon;Yoon, Seunghyun;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.435-445
    • /
    • 2022
  • In this study, the reverberation of a bistatic sonar operated in southeastern coast in the East Sea in July 2020 was analyzed. The reverberation sensor data were collected through an LFM sound source towed by a research vessel and a horizontal line array receiver 1 km to 5 km away from it. The reverberation sensor data was analyzed by various methods including geo-plot after signal processing. Through this, it was confirmed that the angle reflected from the sound source through the scatterer to the receiver has a dominant influence on the distribution of the reverberation sound, and the probability distribution characteristics of bistatic sonar reverberation varies for each beam. In addition, parametric factors of K distribution and Rayleigh distribution were estimated from the sample through moment method estimation. Using the Kolmogorov-Smirnov test at the confidence level of 0.05, the distribution probability of the data was analyzed. As a result, it could be observed that the reverberation follows a Rayleigh probability distribution, and it could be estimated that this was the effect of a low reverberation to noise ratio.

Research on Optimal Deployment of Sonobuoy for Autonomous Aerial Vehicles Using Virtual Environment and DDPG Algorithm (가상환경과 DDPG 알고리즘을 이용한 자율 비행체의 소노부이 최적 배치 연구)

  • Kim, Jong-In;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.152-163
    • /
    • 2022
  • In this paper, we present a method to enable an unmanned aerial vehicle to drop the sonobuoy, an essential element of anti-submarine warfare, in an optimal deployment. To this end, an environment simulating the distribution of sound detection performance was configured through the Unity game engine, and the environment directly configured using Unity ML-Agents and the reinforcement learning algorithm written in Python from the outside communicated with each other and learned. In particular, reinforcement learning is introduced to prevent the accumulation of wrong actions and affect learning, and to secure the maximum detection area for the sonobuoy while the vehicle flies to the target point in the shortest time. The optimal placement of the sonobuoy was achieved by applying the Deep Deterministic Policy Gradient (DDPG) algorithm. As a result of the learning, the agent flew through the sea area and passed only the points to achieve the optimal placement among the 70 target candidates. This means that an autonomous aerial vehicle that deploys a sonobuoy in the shortest time and maximum detection area, which is the requirement for optimal placement, has been implemented.

Effects of Warm Eddy on Long-range Sound Propagation in the East Sea (동해에서 난수성 소용돌이의 원거리 음파전달에 미치는 영향)

  • Kim, Won-Ki;Cho, Chang-bong;Park, Joung-Soo;Hahan, Jooyoung;Na, Youngnam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.455-462
    • /
    • 2015
  • It is well known that warm eddy is frequently developed through the year in the East Sea. The warm eddy may affect sound propagation due to changes of sound velocity structures in the sea water. To verify the effects of the warm eddy for long-range sound propagation, transmission loss and performance surface, which were used mean direct signal excess range generated by sound propagation modeling using re-analyzed climatology data on March 23th in 2007 were analysed. From these analyses, we found that characteristics of sound propagation in the sea water are changed by the warm eddy, and boundaries of the warm eddy act as a barrier for long-range sound propagation. Furthermore, these disadvantages of the eddy related to sound propagation were increased when the sea bottom depth is shallow.