Sound in the ocean is scattered by inhomogeneities of many different kinds, such as the sea surface, the sea bottom, or the randomly distributed bubble layer and school of fish. The total sum of the scattered signals from these scatterers is called reverberation. In order to simulate the reverberation signal precisely, combination of a propagation model with proper scattering models, corresponding to each scattering mechanism, is required. In this article, we develop a reverberation model based on the ray theory easily combined with the existing scattering models. Developed reverberation model uses (1) Chapman-Harris empirical formula and APL-UW model/SSA model for the sea surface scattering. For the sea bottom scattering, it uses (2) Lambert's law and APL-UW model/SSA model. To verify our developed reverberation model, we compare our results with those in Ellis' article and 2006 reverberation workshop. This verified reverberation model SNURM is used to simulate reverberation signal for the neighboring seas of South Korea at mid frequency and the results from model are compared with experimental data in time domain. Through comparison between experiment data and model results, the features of reverberation signal dependent on environment of each sea is investigated and this analysis leads us to select an appropriate scattering function for each area of interest.
This paper proposes an algorithm for estimating positions of array elements placed on a sea floor using acoustic signal in multipath ocean environment. The positions of array elements are estimated by using the travel times of m-sequence signal influenced by the multi-paths environment. The horizontal distance between source and receiver calculated based on the ray model. The proposed paper the algorithm is verified by both simulation data and field experiment in the Bast Sea.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.353-356
/
2001
본 논문은 수중 음향을 이용하여 다중경로(Multipath) 환경에서의 해저면 설치 수신기의 3차원 위치 추정 알고리즘을 제안한다. 해저면 설치 수신기의 위치 추정을 위해 기준 음원의 위치와 음원과 수신기 사이의 수평거리를 사용하며, 수평거리 산출 시 다중경로의 영향을 고려하기 위해 음선 이론 모델을 사용하여 음원과 수신기 사이의 수평거리를 추정한다. 또한 특이치 분해법(Singular Value Decomposition estimator; SVD)을 사용하여 설정된 3차원 위치 추정 문제의 최적해를 추정하며, 이를 사용하여 동해 해상 실험 자료를 분석한다. 논문의 연구 결과 제안된 해저면 설치 3원 위치 추정 알고리즘은 다중경로 환경에서도 좋은 성능을 나타냄을 알 수 있다.
Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.
Kim, Sunhyo;Lee, Wonbyoung;You, Seung-Ki;Choi, Jee Woong;Kim, Wooshik;Park, Joung Soo;Park, Kyoung Ju
The Journal of the Acoustical Society of Korea
/
v.32
no.2
/
pp.104-115
/
2013
In a shallow water waveguide, reverberation signals and their Doppler effects form the primary limitation on sonar system performance. Therefore, in the reverberation-limited environment, it is necessary to estimate the reverberation level to be encountered under the conditions in which the sonar system is operated. In this paper, high-frequency reverberation model capable of simulating the reverberation signals received by a high-speed moving source in a range independent waveguide is suggested. In this model, eigenray information from the source to each boundary is calculated using the ray-based approach and the optimizing method for the launch angles. And the source receiving position changed by the moving source is found by a scattering path-finding algorithm, which considers the speed and direction of source and sound speed to find the path of source movement. The scattering effects from sea surface and bottom boundaries are considered by APL-UW scattering models. The model suggested in this paper is verified by a comparison to the measurements made in August 2010. Lastly, this model reflects well statistical properties of the reverberation signals.
The ray paths and travel times of sound wave in the ocean depend on the physical properties of the propagating media. Ocean Acoustic Tomography(OAT), which is inversely estimate the travel time variations between fixed sources and receivers the physical properties of the corresponding media can he understood. To apply ocean survey technology by using the OAT, the tomographic procedure requires forward problem that variation of the travel times be identified with the variability of the medium. Also, received signals must be satisfied the necessary conditions of ray path stability, identification and resolution in order for OAT to work. The canonical ocean has been determined based on the historical data and its travel time and ray path are used as reference values. The sound speed of canonical ocean in the East Sea is about 1523 m/s at the surface and 1458 m/s at the sound channel axis(400m). Sound speeds in the East Sea are perturbed by warm eddy whose horizontal extension is more than 100 km with deeper than 200 m in depth scale. In this study, an acoustic source and receiver are placed at the depth above the sound channel axis, 350 m, and are separated by 200 km range. Ray paths are identified by the ray theory methed in a range dependent medium whose sound speeds are functions of a range and depth. The eigenray information obtained from interpolation between the rays bracketing the receiver are used to simulate the received signal by convolution of source signal with the eigenray informations. The source signal is taken as a 400 Hz rectangular pulse signal, bandwidth is 16 Hz and pulse length is 64 ms. According to the analysis of the received signal and identified ray path by using numerical model of underwater sound propagation, simulated signals satisfy the necessary conditions of OAT, applied in the East Sea.
Park, Jungyong;Choo, Youngmin;Lee, Keunhwa;Seong, Woojae
The Journal of the Acoustical Society of Korea
/
v.35
no.4
/
pp.243-252
/
2016
In this paper, the incoherent reverberation model based on coupled normal mode method is presented. In the range dependent environment, one way coupled normal mode method is used to calculate the pressure from a source to a scatterer patch and the pressure from a scatterer patch to a receiver. For the computational efficiency, the sound propagation from a source/receiver to the scatterer patch is assumed to occur only in the 2D plane where a source/receiver and scatterer patch are located. For the model verification, problems of the reverberation modeling workshop I and II sponsored by the US office of Naval Research are calculated and the results are compared with the incoherent reverberation model results based on the ray method.
Kim, Tae-Woo;Hwang, A-Rom;Seong, Woo-Jae;Lim, Young-Kon
The Journal of the Acoustical Society of Korea
/
v.27
no.3
/
pp.154-162
/
2008
Signals in an underwater channel get distorted by multipath propagation. In this paper, pre-coding method is suggested which helps comprehending the signals with minimum equalization. The signals are transformed based on the knowledge of the impulse response of the channel. Proposed pre-coding method is tested by simulations based on the ray theory and through water tank experiments. In weak multipath environment, in case of an SNR of about 20 dB, BER is $10^{-3}{\sim}10^{-4}$, while in strong multipath environment, similar BER is achieved with SNR of about 30 dB. In order for the pre-coding method to be used for underwater vehicles, channel prediction method utilizing the waveguide invariant is suggested and tested.
The backscattered sound energy by fish depends on size and physical structure and, most important, on the presence or absence of a swimbladder. Target strength experiments of red seabream (Pagrus major) were conducted by using 38 (split-beam), 120 (split-beam) and 200 kHz (dual-beam) frequencies with live fishes confined in a net-cage and free swimming in tank without the cage, respectively. For 38, 120, and 200 kHz frequencies, target strength equations are expressed as a function of fish length:TS/sub 38kHz/=20 log/sub 1o(l)/-66.41, TS/sub 120kHz/=20 log/sub 1o(1)/-71.80, and TS/sub 200kHz/=20 log/sub 1o(1)/-73.94. To test the acoustic models by using Helmholtz-Kirchhoff ray approximation, predictions of target strength based on swimbladder morphometries are compared with target strength measurements. The target strength of whole fish depends on variations in swimbladder morphology than fish body morphology. In the mean time, when the fish is confined in the net cage, scattering length by the backscattered signal matched with the Gaussian PDF, while under the free-swimming condition, scattering length is close to the Rayleigh PDF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.