본 논문에서는 소량 및 불균형 능동소나 데이터세트에 적용된 다양한 딥러닝 기반 표적식별기의 일반화 성능을 종합적으로 분석하였다. 서로 다른 시간과 해역에서 수집된 능동소나 실험 데이터를 이용하여 두 가지 능동소나 데이터세트를 생성하였다. 데이터세트의 각 샘플은 탐지 처리 이후 탐지된 오디오 신호로부터 추출된 시간-주파수 영역 이미지이다. 표적식별기의 신경망 모델은 다양한 구조를 가지는 22개의 Convolutional Neural Networks(CNN) 모델을 사용하였다. 실험에서 두 가지 데이터세트는 학습/검증 데이터세트와 테스트 데이터세트로 번갈아 가며 사용되었으며, 표적식별기 출력의 변동성을 계산하기 위해 학습/검증/테스트를 10번 반복하고 표적식별 성능을 분석하였다. 이때 학습을 위한 초매개변수는 베이지안 최적화를 이용하여 최적화하였다. 실험 결과 본 논문에서 설계한 얕은 층을 가지는 CNN 모델이 대부분의 깊은 층을 가지는 CNN 모델보다 견실하면서 우수한 일반화 성능을 가지는 것을 확인하였다. 본 논문은 향후 딥러닝 기반 능동소나 표적식별 연구에 대한 방향성을 설정할 때 유용하게 사용될 수 있다.
수중 음향 탐지기를 통해서 수집한 표적 방사음의 스펙트럼은 음향 표적의 토널 성분과 대 양의 유체역학적 배경 잡음 성분들로 구성되어 있다. 음향 표적의 토널 성분은 주요 식별 정보가 되기 때문에 배경 잡음을 추정, 제거함으로써 표적의 토널 성분을 견실하게 추출할 수 있는 알고리즘이 요구된다. 따라서 본 논문에서는 배경 잡음을 제거하고, 미약한 크기의 표적 토널도 탐지 할 수 있는 이중 회귀 신경망을 이용한 토널 추출 방법을 제안한다. 실험을 통하여 본 논문에서 제안한 이중 회귀 신경망을 이용한 토널 추출 기법이 기존의 방법보다 토널 추출 성능이 우수함을 확인하였다.
해수의 물리적 성질 변화에 의한 수중음속 변화는 수중음파 전파에 커다란 영향을 미친다. 매질변동에 의한 음파 전파경로 변동특성, 즉 음파 도달시간 변동에 의한 매질변위량 추정으로 해양을 탐사하는“해양음향 토모그라피”를 운용하기 위하여 비균질 매질에서의 음파 전파경로 파악이 우선이다. 수심이 일정한 비균질한 매질에서의 음파 전파경로를 파악하기 위해 파동방정식의 해를 Ray theory에 의거 ray path를 구하고 송,수신기 사이를 연결하는 eigenray 정보를 얻었다. 음원의 주파수가 400Hz($\pm$25Hz), pulse length가 20ms인 LFM pulse를 사용하였다. 이 음원을 동해의 최소음속층에서 송,수신하였을 경우 음원에서 150Km 떨어진 수신기에 도달한 신호는 평균음속분포 일 때 보다 약 66ms 정도 빨리 도착한다. 또한 Eigenray 정보에 의거 모의된 수신신호는 토모그라피 운용을 위한 필수 조건인 ray path의 식별, 안정성, 그리고 분해능을 만족한다. 또한 모의 수신신호 음파 도달시간 변동 분석으로 송,수신기 사이의 매질 변동을 파악 할 수 있다.
본 논문에서는 경첩 손실 함수를 최소화를 통해서 강인한 이진 오디오 핑거프린팅 방법을 제안하였다. 특히 제안된 방법에서 오디오 핑거프린트는 이진값을 가지므로 핑거프린트 DB 크기를 줄여줄 수 있는 장점이 있다. 일반적으로 특징을 이진화하는 과정에서 핑거프린트의 강인성, 식별성 등 성능의 손실이 불가피하므로 손실을 최소화하는 것이 필요하다. 본 논문에서는 핑거프린팅에서 두 오디오 클립 간의 유사도가 경첩 함수 형태로 주어지는 것에 착안하여 경첩 손실을 최소화하는 방법으로 특징을 이진화하여 핑거프린트를 구하는 방법을 제안한다. 유도된 경첩 손실 함수는 최소 손실 해싱 기법을 통해서 최소화 하였다. 수 천곡 규모의 오디오에 대해서 다양한 변환들에 대한 인식 성능을 실험하였으며, 제안된 경첩 손실 함수 최소화를 통해서 핑거프린트의 식별성과 강인성이 개선됨을 확인하였다.
완전최소자승법(total least squares method, TLS) Ax${\simeq}$b와 같은 형태의 시스템 식을 푸는데 있어 데이터 행렬 A와 b에 잡음비 섞인 경우에 편이 되지 않은 해를 구하기 위하여 널리 이용된다. 그러나 임펄수성의 잡음과 같은 heavy tailed 확률분포를 갖는 잡음이 존재할 때 완전 최소자승법은 unbiased estimator이지만 최소자승법(least squares, LS)과 마찬가지로 경인하지 못한 성능을 보인다. 본 논문에서는 TLS 방법의 견인성에 대하여 논하고 완전최소자승법의 해의 특성을 기반으로 하여 견인한 완전최소자승법(robust TLS, ROTLS)을 제안한다. 또한 ROTLS 방법을 시스템식별문제에 적용하여 그 성능을 평가한다.
수동 소나 시스템에서 음원 깊이를 구분하는 연구는 수 십 년 동안 진행되어 왔다. 그 이유는 음원 깊이 구분을 통해 표적이 수상함인지 잠수함인지 식별할 수 있기 때문이다. 본 논문은 표적으로부터 수신된 소음 (또는 신호)의 채널 임펄스 응답을 이용하여 음원 깊이를 구분하였다. 송신신호에 대한 정보가 없는 상황에서 채널 임펄스 응답을 추정하기 위해 음선 기반 블라인드 디컨벌루션 기법이 사용되었다. 추정된 채널 임펄스 응답의 패턴에서 교차점은 음선의 상대적 도달 시간에 의하여 결정되며, 이는 표적 깊이 구분에 이용된다. 제안된 알고리즘은 시뮬레이션과 실험 데이터를 통하여 검증하였다.
수중환경 하에서 표적을 탐지하고 식별하는 문제는 군사적인 목적은 물론 비군사적 목적으로도 많은 연구가 수행되어 왔다. 수중환경에서의 수중음향 신호가 시간 공간적으로 특성이 변화하며 천해 다중경로 환경을 반영하는 복잡한 특성을 보이는 점으로 인해 능동 표적인식 기술은 매우 어려운 기술로 여겨져 왔다. 또한 실제 데이터 수집의 어려움이 따르게 된다. 본 논문에서는 수중환경 하에서 능동 표적신호를 합성, 특징추출 및 표적식별을 수행할 수 있는 시뮬레이터를 구현하였다. 표적신호의 합성에는 하이라이트 모델과 3차원 모델을 사용하였으며, 표적신호의 식별을 위해서는 다중각도에 기반한 은닉 마코프모델을 사용하였다.
본 논문에서는 DFSA (Dynamic Framed Slotted ALOHA) 기반 충돌 방지 알고리즘에 대해 논하고, 개선된 태그 충돌 방지 알고리즘을 제안한다. 제안된 방법은 기대 값을 이용하는 방법으로서 한 번의 연산을 통해 측정값에 근접한 기대 값을 갖는 태그 수를 추정하므로 속도가 빠르다는 장점이 있으며 태그 수에 따른 빈 슬롯 개수 및 충돌 슬롯의 개수를 이용하여 기대 값을 구한 후 실제 태그 개수를 추정할 수 있다. 제안된 알고리즘은 시뮬레이션을 통해 기존 방법과 비교 및 분석하였다. 그 결과, 전체 태그에 대하여 평균 18.8 라운드에 모든 태그를 식별하였다. 태그의 수가 1000개 이하일 경우 평균 18.2 라운드에 모든 태그를 식별하였으나 태그 수가 1000개 이상인 경우 19.2 라운드에 태그를 식별하였다. 제안된 방식 및 기존 방식을 비교하였을 때 평균 태그 수에 따른 라운드 수가 상쇄 기법이 적용된 DFSA 방식보다 3.1 %, DFSA 방식보다 10.1 %, FSA (Framed Slotted ALOHA) 방식보다 37.5 % 가량 감소하여 처리 속도가 향상됨을 확인할 수 있었다.
선박 통행이 잦은 항만 및 연안 주변지역은 1 kHz 이하의 저주파 대역에서 선박소음이 수중소음에 지배적으로 영향을 미친다. 본 논문에서는 선박자동식별장치(Automatic Identification System, AIS)에서 관측된 선박의 항해정보를 이용하여 수중 선박소음을 추정하는 모델링 방안을 제시한다. 선박소음 모델링을 목적으로 AIS를 이용하여 제주 남부 해역에서 활동하는 선박들의 항행정보를 관측하였고, 모델링된 선박소음의 결과 검증을 위해 실험해역에 수중청음기를 설치하여 수중소음을 측정하였다. AIS 데이터를 이용하여 선박소음준위를 모델링하여 측정된 수중소음과 비교한 결과 시간에 따른 소음준위의 변동 특성이 유사함을 확인하였고, 오차가 발생되는 원인에 대해 토의하였다. 본 연구를 통해 AIS 데이터를 이용하여 선박소음준위를 5 dB 오차 범위에서 추정이 가능함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.