• Title/Summary/Keyword: 음향 감쇠

Search Result 299, Processing Time 0.026 seconds

The Study on Ultrasound Physical Characteristic and Synthesis of Tissue Mimicking Materials Used New Materials (신소재를 사용한 인체조직모사물질의 합성과 초음파 물리적 특성에 관한 연구)

  • Ma, Sang-Chull;Kim, Hwa-Sun;Ann, Young-Man
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • This study analyzed speed of sound, impedance, attenuation coefficient in accordance with acoustic characteristic standard of body soft tissue corresponding with Annex DD of IEC standard 60601-2-37(2007) which is about tissue mimicking materials (TMM) synthesized by polyurethane as a main material and new type of n-type scatter materials. This study reached the following conclusion after analyzing and evaluating image characteristic with SONOACE 9900 c PRIME (MEDESON Co.) and brightness, maximum penetration with convex probe (2.5~5.0 MHz). When n-type scatter materials are increasingly synthesised 0~8% with prepolymer as a main material and polyol mixture as a catalyst, 1. The more scatter materials are increased, the more sound speed of TMM becomes closely similar to soft tissue. 2. The more scatter materials are decreased, the more acoustic impedance becomes closely similar to soft tissue. 3. The more scatter materials are increased, the more attenuation coefficient is increased. 4. The more scatter materials are increased, the more average brightness of images is increased, but there is threshold. 5. The maximum penetration becomes closely similar to soft tissue at the 6% TMM as a scatter material.

Modified AWSSDR method for frequency-dependent reverberation time estimation (주파수 대역별 잔향시간 추정을 위한 변형된 AWSSDR 방식)

  • Min Sik Kim;Hyung Soon Kim
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.91-100
    • /
    • 2023
  • Reverberation time (T60) is a typical acoustic parameter that provides information about reverberation. Since the impacts of reverberation vary depending on the frequency bands even in the same space, frequency-dependent (FD) T60, which offers detailed insights into the acoustic environments, can be useful. However, most conventional blind T60 estimation methods, which estimate the T60 from speech signals, focus on fullband T60 estimation, and a few blind FDT60 estimation methods commonly show poor performance in the low-frequency bands. This paper introduces a modified approach based on Attentive pooling based Weighted Sum of Spectral Decay Rates (AWSSDR), previously proposed for blind T60 estimation, by extending its target from fullband T60 to FDT60. The experimental results show that the proposed method outperforms conventional blind FDT60 estimation methods on the acoustic characterization of environments (ACE) challenge evaluation dataset. Notably, it consistently exhibits excellent estimation performance in all frequency bands. This demonstrates that the mechanism of the AWSSDR method is valuable for blind FDT60 estimation because it reflects the FD variations in the impact of reverberation, aggregating information about FDT60 from the speech signal by processing the spectral decay rates associated with the physical properties of reverberation in each frequency band.

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

The Characteristics of DC-shift in Hybrid Rocket (하이브리드 로켓에서의 DC-shift 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.456-466
    • /
    • 2010
  • Typical combustion instability such as DC-Shift found in the hybrid rocket motor is characterized by non-linearity. DC-Shift can occur in two different realizations. One is so-called a positive shift of measured DC voltage where the pressure increase suddenly. The other is a negative shift where the pressure drops abruptly. In the present work, specifically the negative DC-Shift was investigated to analyze the effect of oxidizer flow condition and the resonance between fundamental frequency and other ones, such as Helmholtz frequency, and acoustic frequency. Results show a peak frequency of several hundreds HZ shifts as combustion proceeds. A negative DC-shift was found as the result of phase cancellation between two dominant frequency, combustion frequency and flow related frequency. Still is it required to study further to identify the change of dominance of frequency during the combustion.

Acoustic Nonlinearity of Surface Wave and Experimental Verification of Characteristics (표면파의 음향 비선형성과 실험적 특성 검증)

  • Lee, Jae-Ik;Kwon, Goo-Do;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • The goal of this study is to introduce the theoretical background of acoustic nonlinearity in surface wave and to verify its characteristics by experiments. It has been known by theory that the nonlinear parameter of surface wave is proportional to the ratio of $2^{nd}$ harmonic amplitude and the power of primary component in the propagated surface wave, as like as in bulk waves. In this paper, in order to verify this characteristics we constructed a measurement system using contact angle beam transducers and measured the nonlinear parameter of surface wave in an Aluminum 6061 alloy block specimen while changing the distance of wave propagation and the input amplitude. We also considered the effect of frequency-dependent attenuation to the measurement of nonlinear parameter. Results showed good agreement with the theoretical expectation that the nonlinear parameter should be independent on the input amplitude and linearly dependent on the input amplitude and the $2^{nd}$ harmonic amplitude is linearly dependant on the propagation distance.

Optimization of the Withdrawal Weighting SAW Filter (Withdrawal Weighting SAW 필터의 최적 설계)

  • 이영진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.23-30
    • /
    • 1999
  • In this study, we propose a new optimization algorithm for a withdrawal weighted SAW transversal filter to satisfy given, specifications such as bandwidth, ripple, insertion loss, and sidelobe rejection level. An analysis tool for the withdrawal weighted filter has been produced by means of the delta function model, and has been applied to the design of a filter consisting of an uniform input IDT and a withdrawal weighted output IDT. This optimization algorithm consists of three routines, which eventually determines eight design parameters to satisfy the performance specifications. At the first step, the number of input and output IDT fingers and their geometrical size are determined by the insertion loss specification. At the next step, the bandwidth is controlled by the change of the IDT finger position. Finally, the sidelobe rejection level is modified through the add/skip technique of IDT fingers. The algorithm in this paper is distinct from conventional techniques in that it can simultaneously consider all the specifications such as bandwidth, ripple, sidelobe rejection level and insertion loss, and optimize the geometry of the withdrawal weighted SAW filter.

  • PDF

Detection of Underwater Target Using Adaptive Filter (해수에서 물체 탐지를 위한 적응 필터의 이용에 관한 연구)

  • Oh, Jong-Taik;Kwon, Sung-Jai;Park, Song-Bai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.29-38
    • /
    • 1989
  • Detection of an underwater target by acoustic wave raises various difficulties due to unpredictable noise interference which originates from clutter, reverberation, and variations of medium characteristics with time and location. The SNR and the range resolution of conventional SONAR systems using a matched filter are generally poor, since the latter is optimum only in the additive white noise case. Furthermore, it cannot compensate for variations of the detection level which are responsible for the resultant detection errors. In this paper, the unpredictable interferences are compensated for by using an adaptive filter. It recursively estimates the channel impulse response based on the received echo signal. In the low noise environments, the estimated impulse response is close to the true one, providing a good range resolution, and a matched filter is used subsequently for the purpose of detection. It is shown through computer simulation that good performance can be achieved via the two steps of filtering. Also, the detection level remains unchanged without any additional provisions. Finally, we present the characteristics of the employed adaptive filter parameters.

  • PDF

A study on the absorption coefficient of an artificial perforated material (인위적 다공물질의 흡음특성 연구)

  • Pyo, Sun-Chan;Yun, Seok-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1987
  • The absorption coefficients of various length bundles of straws simulating perforated material were studied both theoretically and experimentally. For the theoretical predictions Zwikker and Kosten's theory was modified by adapting Biot's theory based on Poiseuille flow. The experimental data were collected using an impedance tube where the attenuation along the length of the tube was considered. The theoretically predicted values agreed very well with the experimentally measured ones for frequencies lower than 700Hz with bundles shorter than 120mm in length placed against the rigid end of the impedance tube. Configurations with an air gap between the end of a bundle and the rigid end were also investigated. Absorption coefficients were higher for 150mm bundles than for those of combined/air gap configurations with a total length of 150mm. Also for the fixed bundle lengths, absorption was found to increase with increasing air gap.

  • PDF

The dynamic stiffness of resilient materials for floor impact sound according to temperature change (온도변화에 따른 바닥충격음 완충재의 동탄성계수 변화)

  • Yeon, Junoh;Goo, Heemo;Lee, Sungchan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.338-342
    • /
    • 2018
  • In order to solve the floor impact sound problem in the upper and lower floors, the Ministry of Land, Transport and Maritime Affairs also notifies the physical properties of the resilient material affecting the floor impact sound level. The dynamic modulus of elasticity and the loss factor before and after heating are most related to the floor impact noise, especially for the cushioning material. Therefore, in this study, the rate of change with respect to the dynamic modulus and loss factor with temperature change was examined by increasing $10^{\circ}C$ by $10^{\circ}C$ from the temperature condition of $70^{\circ}C$ specified in the standard. The dynamic modulus of elasticity and the loss modulus were measured by using the pulse excitation method for eight kinds of samples. The calculation method was calculated by the time series analysis method using the damped vibration waveform.

Construction of Ultrasonic Power Measurement System and Its Performance Evaluation (초음파 파워 측정 시스템 구성 및 성능평가)

  • Jho Moon Jae;Kim Yong Tae;Yun Yong Hyeon;Jung Suug Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.431-440
    • /
    • 2005
  • The precise measurement of ultrasonic power is important to the qualify assurance and the safety of medical ultrasonic equipments In the Present work, a brier theory was introduced to determine the ultrasonic Power from the time valving balance-indication due to the radiation force acting on an absorbing target and/or other causes such as buoyancy during the repetition of on/off behavior of ultrasonic irradiation. The developed automated system measuring the ultrasonic power was described in detail with the precise mechanical alignment tool , the electric signal generation network, the control and measurement network and the appropriate procedure. The ultrasonic power measured by the developed system was compared to the reference data calibrated by the other national metrology institute at 1 MHz, 5 MHz, 10 MHz, and 15 MHz over the range 10 mW to 10 W. Their relative differences are within $5\%$.