• Title/Summary/Keyword: 음향소음

Search Result 1,768, Processing Time 0.027 seconds

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

A study on the acoustic scalings of cavitation noise in an orifice configuration and a constant flow control valve (오리피스 구조내에서 발생한 공동소음의 음향학적 스케일링에 관한 연구)

  • Lee, J. H.;Lee, S.;Yoo, S. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.81-89
    • /
    • 1999
  • The major source of noise in the process of transporting liquids is related to the cavitation phenomenon. The control valve noise is mostly dominated by bubble dynamics under cavitating conditions. In this investigation, an orifice configuration is set-up to correlate its flow-field and acoustic signatures with those from a control valve device. The performance and noise characteristics form the orifice configuration in anechoic surroundings were measured to reveal the noise sources depending on pressure differences across the orifice configuration. The sound powers from the orifice configuration are effectively normalized using proposed scaling parameters. Flow-excited dynamic systems for which there is no strong coupling between the flow and the system response can be described using a linear source-filter model. On this assumption, the normalized sound powers can be decomposed of noise source function and a response function. To find noise sources, pressure spectra measured over a range of pressure differences are transformed into the product of two non-dimensional frequency function : $P_{ss}(He,f_{ca},x/D) = F(f_{ca})\;G(He,x/D)$. This scheme of finding noise sources is shown to be applicable to the cavitation noise from the control valve effectively Two kinds of cavitating modes based on our experimental data are found and discussed.

  • PDF

Direction of Arrival Estimation under Aliasing Conditions (앨리아싱 조건에서의 광대역 음향신호의 방위각 추정)

  • 윤병우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.

  • PDF

The Thronging of Shoals of Squid to Audible underwater Sound (가청 수중음에 대한 오징어 어군의 위집)

  • 서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.220-227
    • /
    • 1995
  • An underwater speaker was designed and used as sound source for thronging shoal of squid in squid angling gear operation. The frequency characteristics of the designed speaker was analyzed experimentally and the thronging response of shoals of squid which may be a key parameter for a new sound catching method, was characterized in audible frequency. The field experiment was carried out in the coast of Cheju Island. The results of this study are summarized as follows; 1. Amplitude response of the speaker shows a maximum in their the frequency of 500Hz. 2. The output waveform distortion is not measured in the frequency range of 250~600Hz. 3. A underwater noise of shoals of squid which were thronged by fish lamp in night appeared the center frequency of 300~400Hz. 4. The shoals of squid shows a thronging response, when a manufactured underwater speaker transmits a intermittent audible sound of 300~400Hz in 10m depth of water.

  • PDF

Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank (잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증)

  • Joo-Yeob Lee;Kookhyun Kim;Sung-Ju Park;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

A study on the correlation between Sound Characteristic and Sasang Constitution by Laryngograph, EGG (Laryngograph와 EGG를 이용한 음향특성(音響特性)과 사상체질간(四象體質間)의 상관성(相關性) 연구(硏究))

  • Kim, Sun-hyung;Shin, Mi-ran;Kim, Dal-rae;Kwon, Ki-rok
    • Journal of Sasang Constitutional Medicine
    • /
    • v.12 no.1
    • /
    • pp.144-156
    • /
    • 2000
  • Purpose of this study is to help classifying Sasang Constitution through correlation with Larynx waveform. This study was done it under the suppose that Sasang Constitution would be correlation with Larynx waveform. The following result were obtained about correlation between Erectroglottograph waveform and Sasang Constitution by analysis EGG program. 1. Taeumin was lower than Soyangin in Open Std Deviation, Contact Std Deviation of male/a/(0.5sec) 2. Soeyangin was high compared with the others in Pitch range of maie/a/(2.5sec) 3. Taeumin was higher than Soeumin in Pitch range, Soeyangin in pitch Maximum, and the others in Pitch Std Deviation of female/e/(0.5sec) 4. Taeumin was higher than Soeumin in Contact Maximum and lower than Soeumin in Contact Maximum of female/a/(2.5sec) 5. There was no significantly difference in male/e/(0.5sec), male/e/(2.5sce), female/a/(0.5sec), female/e/(2.5sec) 6. The percent of correctly classified in Soeoumin and Taeumin was high in CART Algolism. The risk estimate of Soyangin was relatively high. The study may be use on of the method to make objective diagnosis in Sasang constitution.

  • PDF

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

An Study on the Correlation between Sound Characteristics and Sasang Constitution by CSL (CSL을 통한 음향특성과 사상체질간의 상관성 연구)

  • Shin, Mi-ran;Kim, Dal-lae
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.1
    • /
    • pp.137-157
    • /
    • 1999
  • The purpose of this study is to help classifying Sasang Constitution through correlation with sound characteristic. This study was done it under the suppose that Sasang Constitution has correlation with sound spectrogram. The following result were obtained about correlation between sound spectrogram and Sasang Constitution by comparison and analysis 1. Soeumin answered his voice low tone, smooth and quiet in the survey. Soyangin answered his voice high, clear, fast and speaking random. Taeumin answered his voice low, thick and muddy. 2. Taeyangin was significantly slow compared with the others in the time of reading composition. Taeyangin was significantly slow compared with the others in Formant frequency 1. Taeyangin was significantly discriminated from Soeumin in Formant frequency 5. Taeyangin was significantly low compared with the others in Bandwidth 2. Soeumln was significantly low compared with Taeyangin in Pitch Maximum and Pitch Maximum-Pitch Minimum. Taeyangin was significantly high compared with the others in Energy mean. 3. In list of specification, the discrimination rate was higher than that by lists of 13 in the results of Multi-dimensional 4-class minimum-distance. The discrimination rate of three disposition except Soyangin was higher than that of four disposition in the results of One way ANOVA and Analysis of dis crimination in SPSS/PC+. In CART, the estimate rate of Sasang Constitution discrimination was higher than any other method. It is considered that there is a correlation between sound spectrogram and Sasang constitution according to the results. And method of Sasang constitution classification through sound spectrogram analysis can be one method as assistant for the objectification of Sasang constitution classification.

  • PDF

A comparison of acoustic measures among the microphone types for smartphone recordings in normal adults (정상 성인에서 스마트폰 녹음을 위한 마이크 유형 간 음향학적 측정치 비교)

  • Jeong In Park;Seung Jin Lee
    • Phonetics and Speech Sciences
    • /
    • v.16 no.2
    • /
    • pp.49-58
    • /
    • 2024
  • This study aimed to compare the acoustic measurements of speech samples recorded from individuals with normal voices using various devices: the Computerized Speech Lab (CSL), a unidirectional wired pin-microphone (WIRED) suitable for smartphones, the built-in omnidirectional microphone (SMART) of smartphones, and Bluetooth-connected wireless earphones, specifically the Galaxy Buds2 Pro (WIRELESS). This study included 40 normal adults (12 males and 28 females) who had not visited an otolaryngologist for respiratory diseases within the past three months. Participants performed sustained vowel /a/ phonation for four seconds and reading tasks with sentences ("Walk") and paragraphs ("Autumn") in a sound-treated booth. Recordings were simultaneously conducted using the four different devices and synchronized based on the CSL-recorded samples for analysis using the MDVP, ADSV, and VOXplot programs. Compared with CSL, the Cepstral Spectral Index of Dysphonia (CSIDV, CSIDS) and Acoustic Voice Quality Index (AVQI) values were lower in the WIRED and higher in the SMART. The opposite trend was observed for the L/H spectral ratios (SRV and SRS), and the WIRELESS demonstrated task-specific discrepancies. Furthermore, both the fundamental frequency (F0) and the cepstral peak prominence of the vowel samples (CPPV) had intraclass correlation coefficient (ICC) values above 0.9, indicating high reliability. These variables, F0 and CPPV were considered highly reliable for voice recordings across different microphone types. However, caution should be exercised when analyzing and interpreting variables such as the SR, CSID, and AVQI, which may be influenced by the type of microphone used.