• Title/Summary/Keyword: 음향상사

Search Result 67, Processing Time 0.02 seconds

A Study on the Theory of Simulation Rule for Scale Model Experiment in Architectural Acoustics (건축음향모형실험의 상사법칙의 이론에 관한 연구)

  • Kim, Cheon-Su;Sin, Yeong-Mu;Park, Byeong-Jeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.93-98
    • /
    • 1994
  • This study aims to find the theoretical consideration of the basic simularity rule between scale model experiment and real building as a results ; 1. In the case of room acoustics, $f_m=n\cdot{f_r}\;T_m=T_r/n\; \alpha_m(f_m)=\alpha_r(f_r)$ 2. That of sound Insulation : $TL_m(f_m)=TL_r(f_r)$

  • PDF

A Numerical Study on Aerodynamic Noise Characteristics of the Tandem Cylinders using DES and FW-H Acoustic Analogy (DES와 FW-H 음향상사법을 이용한 탠덤 실린더의 공력소음 특성 연구)

  • Kim, Manshik;Lee, Youn Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.883-891
    • /
    • 2018
  • In this paper, aerodynamic noise simulation was conducted using DES (Detached Eddy Simulation) and FW-H (Ffowcs Williams and Hawkings) acoustic analogy for the tandem cylinders which have configuration similar to a landing gear of airplanes. Numerical simulation for the tandem cylinders whose centers are 3.7D apart was carried out and results were compared with the measured data such as flow characteristics, pressure coefficients on the cylinder surfaces and far-field noise characteristics. It was confirmed that periodically shedded vortices released at the upstream cylinder and impinged on the downstream cylinder surface are major sources of aerodynamic noise. After verifying the computational method of using DES and FW-H acoustic analogy for predicting aerodynamic noise of tandem cylinders, additional simulation was conducted to examine the effect of attaching a splitter plate at the rear of the upstream cylinder. It was confirmed that the noise level in specific frequency band decreased significantly because the splitter plate changed the vortex shedding features and reduced dipole noise source.

Prediction of Thickness and Loading Noise from Aircraft Propeller (항공기용 프로펠러에서의 두께 및 하중소음 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • The aim of this research is to predict the thickness and loading noise of the round-tip shaped Hartzell propeller currently used in the general aviation aircraft. Before implementing the noise analysis, the pressure distribution on the propeller was obtained by using the free wake panel method and unsteady Bernoulli's equation. The noise signal at observer position can be obtained by using the FW-H equation. The noise prediction results for the propeller indicates that the thickness noise has s symmetric directivity pattern with respect to the tip path plane, while the noise due to loading shows higher noise directivity toward downstream than the upstream direction from the rotor plane. The loading noise is dominant rather than the thickness noise in normal operating condition.

3D Sound System Using Real Sound Iterface (실감음향 인터페이스를 이용한 입체음향 시스템)

  • 김용완;김재우;김풍민;김현빈
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.183-186
    • /
    • 1999
  • 가상현실은 현실에 구애받지 않고 상사의 세계를 현실과 같이 만들어 내어 인체의 모든 감각기관이 인위적으로 창조된 세계에 몰입됨으로써 현실에 있는 것처럼 느낄 수 있는 사이버스페이스이다. 본 논문에서는 청취자의 머리움직임에 따라 머리 추적기로부터 수신된 정보로서 음향의 방향감 간의 상관모델을 구성하여 시스템내의 S/W 모듈에 전달하는 인터페이스를 구축하고, 이를 토대로 머리 움직임 변화에 부합되는 실감음향을 생성하고, 영상도 함께 동기화하여 몰입감을 증대시키는 실감음향 인터페이스에 대한 개발에 대해서 논의한다.

  • PDF

Study on noise prediction by classification of noise sources of a tip-jet driven rotor (팁젯 로터의 소음원 구분을 통한 소음 예측 기법 연구)

  • Ko, Jeongwoo;Kim, Jonghui;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • The noise sources of a tip-jet driven rotor can be separated by rotor blade noise and jet noise. The rotor blade noise consists of thickness noise, loading noise, nonlinear quadrupole noise, and jet noise is divided into nozzle momentum noise and jet radiation noise. The flow analysis for the prediction of rotor blade noise is performed by CFD (Computational Fluid Dynamics) analysis, and the noise source of the rotor blade noise is identified by simultaneously applying the permeable and impermeable surface based FW-H (Ffowcs Williams-Hawkings) acoustic analogy. The nozzle momentum noise is obtained by permeable surface FW-H, and jet radiation noise is predicted by using empirical method for the fixed-wing jet. Both of jet noises use nozzle exit condition for noise analysis. The accuracy of the technique is verified based on the noise measurements of the tip-jet driven rotor, and the unique noise characteristics of the tip-jet driven rotor is confirmed by spectrum analysis.

Turbulent-Induced Noise around a Circular Cylinder using Permeable FW-H Method (Permeable FW-H 방법을 이용한 원형 실린더 주변의 난류유동소음해석)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Jung, Chul-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.752-759
    • /
    • 2014
  • Varieties of research on turbulent-induced noise is conducted with combinations of acoustic analogy methods and computational fluid dynamic methods to analyze efficiently and accurately. Application of FW-H acoustic analogy without turbulent noise is the most popular method due to its calculation cost. In this paper, turbulent-induced noise is predicted using RANS turbulence model and permeable FW-H method. For simplicity, noise from 2D cylinder is examined using three different methods, direct method of RANS, FW-H method without turbulent noise and permeable FW-H method which can take into account of turbulent-induced noise. Turbulent noise was well predicted using permeable FW-H method with same computational cost of original FW-H method. Also, ability of permeable FW-H method to predict highly accurate turbulent-induced noise by applying adequate permeable surface is presented. The procedure to predict turbulent-induced noise using permeable FW-H is established and its usability is shown.

Analytical Study on Performance Evaluation of Large-Sized Silencer using Geometric Similarity Law (기하상사법을 이용한 대형 소음기의 성능평가에 관한 해석적 연구)

  • Yang, Jun-Hyuk;Lee, Boo-Youn;Kim, Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, a geometric similarity law is introduced to the performance test of a large-sized silencer used in ship engine or plant system. A test of scale-down model enable to yield the cost and time saving in developing large-sized silencer considerably. Two types of silencer, resonator and expansion chamber, were analyzed by a theoretical method and an acoustical FEM(finite element method) in order to obtain geometric similarity variables. A method is proposed to estimate the transmission loss of prototype model using the test results of scale-down model. Two actual large-sized silencer, which consist of resonator and expansion chamber, were analysed by an acoustical FE analysis. Consequently, the proposed method predicts effectively the performance of prototype silencers using those of scale-down models.

An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation (수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용)

  • 전완호;이덕주
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

Time Domain Prediction and Analysis of Low Frequency Noise from Wind Turbine using Hybrid Computational Aeroacoustics (CAA) Method (복합 전산 공력음향학(CAA) 방법을 이용한 시간영역 풍력터빈 저주파수 소음 예측과 분석)

  • Lee, Gwang-Se;Cheong, Cheolung;Kim, Hyung-Taek;Joo, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.369-376
    • /
    • 2013
  • Using Lowson's acoustic analogy, low frequency noise of a wind turbine (WT) is predicted in time domain and the noise sources contributing to the low frequency noise is analyzed. To compute averaged pressure distribution on blades of the WT as noise source, XFOIL is utilized. The blade source domain is divided into several segments along the span direction to compute force exerted on air surrounding the blade segments, which is used as input for noise prediction. The noise sources are decomposed into three terms of force fluctuation, acceleration and velocity terms and are analyzed to investigate each spectral contribution. Finally, predicted spectra are compared with measured low frequency noise spectrum of a wind turbine in operation. It is found that the force fluctuation component contributes strongly in low frequency range with increasing wind speed.