• Title/Summary/Keyword: 음향방출 에너지

Search Result 60, Processing Time 0.027 seconds

Characteristics of Corrosion Damages in Bottom Plate of Above Ground Tank by Acoustic Emission Signal (지상탱크 저판부의 부식손상 평가를 위한 음향방출 신호의 분석)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.64-72
    • /
    • 2007
  • Under the AE methods, the valid condition analysis and evaluation the leak etc, resulted by the AE signal pattern on the bottom plate of ground tank at full. In next more, the gradient of accumulation amplitude distribution analysis and comparison the energy, count, and duration time that noise of EMI signal were removed. EMI signal showed height-energy, count, and duration time, it also appeared great gradient of accumulation distribution. Then, with the pure remaining AE signals cluster analysis and location. It would possibly assume of damage with corrosion. Total cluster 20 and energy showed between the maximum 11,990 and 8,565 which is much lower than above figure and event number showed from 8 to 5. Even when it difficult to certify damage by open, as it is raised higher height-sensitivity and threshold by 60 dB. It would possibly presume of location source more accurately.

  • PDF

Evaluation of AR Characteristics on Microscopic Fracture Mechanism of A17075/CERP Hybrid Composite (Al 7075/CFRP 하이브리드 복합재료의 미시적 파괴특성에 대한 AE특성평가)

  • 이진경;이준현;윤한기
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.1-6
    • /
    • 2002
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study. AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

A study on the investigation of AE during orthogonal metal cutting (2次元 切削時 發생하는 AE에 관한 硏究)

  • Kang, Myung-Soon;Choi, Seong-Joo;Park, Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.906-915
    • /
    • 1986
  • This study reviewed the theory of acoustic emission applying generation of acoustic emission in metal cutting and proposed a relationship between fundamental cutting parameters and the root mean square (RMS) voltage of the acoustic emission on the basis of the mechanics of the orthogonal cutting operation. Experimental results are presented for 6063-T5 Auminum and the validity of this relationship is evaluated by a series of tests varying cutting speed, feed rate and rake angle in orthogonal cutting. The original formula derived theoretically has been modified in order to utilize independent of fundamental cutting parameters. RMS voltage of acoustic emission depends on cutting speed and strain rate, but it is not much affected by feed rate. Applying lubricant, the drop of RMS level has been observed.

A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique (다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Do-Hyeong;Lee, Sang-Gok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

Measurement of Crack Length by Ultrasonic Attenuation Coefficient (초음파 감쇠계수에 의한 균열길이의 측정)

  • Chung, Nam-Yong;Park, Sung-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.340-345
    • /
    • 2003
  • In this paper, the ultrasonic attenuation coefficient was measured by variation of crack length for double-cantilever beam(DCB) specimen. The energy release rate, G, was obtained by the experimental measurement of compliance. The experimental results represents that the relation between crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the results of experiments, the measurement method of crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

Measurement of Crack Length by Ultrasonic Attenuation Coefficients on Interfaces of Al/Epoxy Bonded Dissimilar Materials (Al/Epoxy 이종재 접합 계면의 초음파 감쇠계수에 의한 균열길이의 측정)

  • Park, Sung-Il;Chung, Nam-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1109-1114
    • /
    • 2003
  • The initial crack often occurs on the bonded interface and it is the general cause of the interface fracture. It is very significant to establish the measurement method of interfacial crack by applying the ultrasonic technology into the interface of bonded dissimilar materials. In this paper, the interfacial crack length was measured by ultrasonic attenuation coefficient in the Al/Epoxy bonded dissimilar materials of double-cantilever beam(DCB). The energy release rate, G, was obtained by the experimental and Ripling's equation measurement of compliance. The experimental results represent that the relation between interfacial crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the experimental results, a measurement method of the interfacial crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

Measurement of Crack Length by Ultrasonic Attenuation Coefficient (초음파 감쇠계수에 의한 균열길이의 측정)

  • Chung, Nam-Yong;Park, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.386-393
    • /
    • 2004
  • In this paper, the ultrasonic attenuation coefficient was measured by variation of crack length for double-cantilever beam(DCB) specimen. The energy release rate, G, was obtained by the experimental measurement of compliance. The experimental results represents that the crack length for the ultrasonic attenuation coefficient and energy release rate is increases proportionally From the experimental results, we proposed a detecting method of the crack length by the ultrasonic attenuation coefficient and discussed it.

Condition Monitoring System of Wind Turbine (풍력발전기를 위한 상태 모니터링 기술)

  • Hameed, Z.;Hong, Y.S.;Ahn, S.H.;Cho, Y.M.;Song, C.K.;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.395-399
    • /
    • 2007
  • Renewable energy sources such as wind energy is copiously available without any limitation. Wind turbines are used to tap the potential of wind energy which is available in millions of megawatt. Reliability of wind turbine is critical to extract this maximum amount of energy from the wind. We reviewed different techniques, methodologies, and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns. To keep the wind turbine in operation, implementation of Condition Monitoring System (CMS) is paramount, and for this purpose ample knowledge of these types of system is mandatory. So, an attempt has been made in this direction to review maximum approaches related to CMS in this piece of writing.

  • PDF

Blade Development and Test of WinDS$3000^{TM}$ System (WinDS$3000^{TM}$ 시스템의 블레이드 개발 및 시험)

  • Lee, Sang-Il;Lee, Kyeong-Woo;Joo, Wan-Don;Lee, Ki-Hak;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.448-448
    • /
    • 2009
  • A new blade has been developed to apply to Doosan 3MW offshore wind turbine named as WinDS3000TM. The 3MW blade has been designed by the concept of slim external shape and optimized structure. High-performance glass fiber reinforced epoxy composites were used as the main material of the blade. The blade was manufactured using vacuum infusion process in order to increase the fiber volume fraction and to reduce micro-porosities. The blade has successfully passed the full-scale blade static test for certification. During the test, micro-failure signal and strain change of the blade were measured using acoustic emission sensors and strain gages. The blade has robust structure and weighs lighter compared to conventional blade since the new blade was designed by optimization process. The 3MW blade will be commercially applied to WinDS$3000^{TM}$ in 2010.

  • PDF