• Title/Summary/Keyword: 음향대조제어

Search Result 4, Processing Time 0.019 seconds

Fundamentals of Bright and Dark Zone: Theoretical Backgrounds (음향 대조 및 밝기 제어: 이론적 배경)

  • Choi, Jung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.388-393
    • /
    • 2012
  • Acoustic brightness and contrast control are promising techniques for manipulating acoustic energy over selected zones of interest using loudspeaker arrays. In this paper, the fundamental theory and concept of the brightness and contrast control is reviewed. The similarity and difference of two different strategies are explained in terms of the constraint required to determine a unique solution among many possible candidates. The application examples and recent progresses of the brightness and contrast control are presented.

  • PDF

A method of Shaped Sound Focusing Using Multiple Monopole Sources: Hollow Cylinder shape (다수의 단극 음원들을 이용한 속이 빈 실린더 형상의 응향 위치 에너지 집적공간 형성방법)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.537-540
    • /
    • 2005
  • Shaped Sound Focusing is defined as the generation of acoustically bright zone with a certain shape in space using multiple sources. The acoustically bright zone is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustic focusing using multiple sources is essential because acoustic energy is very small to use other type of energy. It can be done by taking optimization techniques which can be acoustic brigtness control and acoustic contrast control. But it has not been frequently concerned about several cases, so the case of hollow cylinder shaped sound focusing is adapted and there wi11 be arguments about available control variables and spatially controllable region in this case.

  • PDF

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

Spatial Manipulation of Sound Using Multiple Sources (다수의 음원을 사용한 공간의 소리 제어 방법론)

  • Choi, Joung-Woo;Kim, Yang-Hann;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1378-1388
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments. the quality of sound can not be manifested over every Position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.