The goal of using numerical methods in this study is two-fold: to replicate a set of measured, individualized HRTFs by a computer simulation, and also to visualise the resultant sound field around the head. Two methods can be wed: the Boundary Element Method (BEM) and the Infinite-Finite Element Method (IFEM). This paper presents the results of a preliminary study carried out on a KEMAR dummy-head, the geometry of which was captured with a high accuracy 3-D laser scanner and digitiser. The scanned computer model was converted to a few valid BEM and IFEM meshes with different polygon resolutions, enabling us to optimise the simulation for different frequency ranges. The results show a good agreement between simulations and measurements of the sound pressure at the blocked ear-canal of the dummy-head. The principle of reciprocity provides an effect method to simulate HRTF database. The BEM was also used to investigate the total sound field around the head, providing a tool to visualise the sound field for different arrangements of virtual acoustic imaging systems.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.14
no.7
/
pp.586-603
/
2004
One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"
The space between tire and wheel guard acts as a path for tire pattern noise transmission. In this study, acoustic phenomenon occurring in the tire-wheel guard space is investigated using acoustic mode analysis and visualization of the sound pressure distribution over the wheel guard surface. We introduced a cavity over the wheel guard surface to reduce the tire pattern noise, where the cavity acts as an acoustic damper. The interior noise was reduced by 2 dB(A), and the noise control measures treated in this study may provide an efficient method to improve interior sound quality without increasing cost and weight at the final stage of the vehicle development.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2000.05b
/
pp.287-290
/
2000
본 연구에서는 압전세라믹스와 금속판으로 구성된 음향트랜스듀서를 모델로 설정하고, 원형평판으로부터 방사되는 내부음장과 트랜스듀서의 외부로 방사되는 음향특성을 수치 해석하였다. 음향트랜스듀서의 내부 유니트를 요소 분할하며 경계조건을 적용시키고, 유한요소법을 이용하여 내부의 음장 분포와 음압 변화량을 가시화하였다. 그리고 트랜스듀서 외부로 방사되는 음압은 가상경계면 외부를 요소분할한 후 다양한 주파수에서 음압 기울기와 등압선을 수치해석하였다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2004.05a
/
pp.63-63
/
2004
기계류는 대개 부정형의 형상을 지니고 있으며, 또 표면이 모두 연결되어 있으므로, 진동하는 물체 표면상에서의 소음원 특성을 세밀히 파악하는 일은 매우 어려운 일이다. 음향 인텐시티나 공간 푸리에 변환을 이용하는 홀로그래피 기법 등의 어레이 마이크에 의한 기법들이 제안되었고 또 활용되고 있으나, 이는 어디까지나 음원에서 가까운 음장을 가상적인 음원면이라 보고 재구성하는 것이어서 실제 음원의 특성을 파악하는데 어려움이 있다. 이러한 문제점을 해결하기 위해 음원표면을 경계요소화 모델링을 하고, 어레이 마이크로 측정될 음장의 지점과 표면간의 관계를 수학적으로 정리한 후, 마이크에서 측정된 신호를 이용해 역으로 경계요소해석 계산을 수행하여 음원 특성을 파악하는 기법이 제안되었다. 본 발표에 있어서는 이와 같은 취지에서 ‘개발된 Inverse BEM을 이용한 NAH 기법’에 관한 개괄적인 내용을 설명하고, 그 적용 가능성 및 이 기법의 미래에 대해 설명하며, 다음과 같은 내용의 순서대로 설명된다: $\textbullet$ 각종 음원 파악 기법들의 특성과 이 방법이 필요한 이유 $\textbullet$일반 음향 holography 기법 (STSF)과의 차이점 $\textbullet$ 이론적 배경 개괄 $\textbullet$ 실제 적용 순서에 따른 방법의 설명 $\textbullet$ 후처리 결과물 $\textbullet$ 본 기법의 향후 과제 및 적용 방법의 개선
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2005.11a
/
pp.629-632
/
2005
What does sound look like if we can see it? It might depend on the acoustic variables we want to see. In this article, we propose various ways to visualize or express sound field in much more intuitive manner. In particular, new visualization schemes that can effectively visualize sound intensity and 3D pressure field are proposed. This allows us to represent sound pressure, particle velocity and acoustic conductance at the same time, even in three-dimensional coordinate. Visualization examples corresponding to the proposed techniques show that we can successfully transfer the meaning of physical variable to visual space.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06d
/
pp.68-71
/
1998
본 연구에서는 64(8$\times$8) 개의 마이크로폰 정방 배열에 의한 음장 가시화 시스템을 설계하고 , FFT 알고리즘과 원거리 음향 홀로그래피법 알고리즘을 이용한 음원 위치 추정에 관하여 기술한다. 본 연구에서 설계한 측정 시스템은 방사된 음들을 동시에 수음할수 있으며 실시간 데이터 처리가 가능하다. 또한 짧은 계측시간과 고분해능으로 실음장에서 안정하게 음원의 위치를 추정할 수 있다. 본 연구의 타당성을 검증하기 위해 시뮬레이션을 잉하여 마이크로폰 간격 및 측정면의 최적 조건을 구한 후 실음장 측정 실험에 적용하였다. 시뮬레이션 데이터와 실험 데이터를 비교.분석한 결과 타당성을 검증할 수 있었다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
1996.04a
/
pp.291-297
/
1996
To visualize sound field or to identify noise sources, we can use many methods such as intensity method, acoustic holographic method, source identification method using line array, etc. Conventionally all these methods are performed with the assumption of stationary condition in space and time. But for moving source, spatial characteristics and frequency components are changing, so we need another processing algorithm. This paper shows some experimental results - sound field by moving noise sources. In the experiment cross type microphone line array is used for sensing pressure and cars and a motorcycle are used as moving sources that are assumed to have constant speed. The processing methods are acoustic holographic method, spherical beamforming and spectrogram.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2007.11a
/
pp.33-36
/
2007
Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example, when we need to know only the locations and overall propagation pattern of sound sources, a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope, not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.