• Title/Summary/Keyword: 음압해석

Search Result 172, Processing Time 0.026 seconds

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.

A study on the design of a trumpet horn for automobiles based on acoustic reactance at the horn throat (혼 입구에서의 음향 리액턴스에 근거한 자동차용 트럼펫 혼의 설계 연구)

  • Junsu Lee;Woongji Kim;Daehyun Kim;Dongwook Yoo;Wonkyu Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • A car horn serves a crucial safety role as a means of communication between drivers and a part that alerts pedestrians in advance. While previous studies have utilized finite element method and electric circuit model to simulate and analyze characteristics of the car horns, there remains a lack of research on design methods of a trumpet horn. This paper presents a design approach that predicts the operating frequency based on the acoustic reactance at the throat of the horn, once the vibrating part is determined. We deal with a horn combining both an exponential horn and a waveguide in the acoustic section, and confirm that the acoustic reactance at the horn throat measured by impedance tube experiment agrees well compared with the numerical result obtained using the finite element method. The resonance frequency of the car horn is predicted using the COMSOL Multiphysics finite element numerical analysis model, and the proposed design method is validated by measuring the operating frequency of the designed horn in a sound pressure experiment. As a result, the resonance measured in a semi-anechoic chamber environment by applying a DC voltage of 12 [V] excluding the holder occurs accurately within a few [Hz] of the design operating frequency. This paper discuss the design method of a trumpet horn from the perspective of the horn's acoustic reactance, and is expected to be useful for designing horn systems.

The propagation characteristics of road traffic noise - with respect to human response - (도로 교통소음의 전파특성 연구 - 인체에 미치는 영향에 대한 고찰 -)

  • 장호경
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • In order to predict the propagation of road traffic noise over level terrain, this paper presents the model of the simple monopole and dipole source. Excess attenuations by ground acoustic impedance with continuity are investigated by outdoor experiments. In this results, the propagation of road traffic noise is affected by the acoustic impedance properties of the ground surface over which the noise travels, particularly when the receiver position is close to the surface. These results are then used to derive sound pressure level contours for the attenuation with distance of the equivalent energy level received from passing vehicle. The percentage of deep sleep and the number of wakings are studied for continuous traffic noise. The hearing loss and sensitivity threshold shift is investigated by changing the various parameters such as the effects of aging and noise exposure. Evaluation of the response of human to traffic noise is discribed. It is shown that exposure to excessive noise can cause temporary loss of hearing that may become permanent if the exposure is prolonged or intense.

  • PDF

Thermal Dispersion Method for a Medical Ultrasonic Phased Array Transducer (의료용 초음파 위상배열 트랜스듀서의 열 분산 방안)

  • Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • When the driving voltage of an ultrasound transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer that can cause patient's skin burn and degradation of transducer performance. Hence, in this paper, a method to disperse the heat of the transducer has been studied. The phased array transducer having 3 MHz center frequency and 32 channels was selected for analyses of the thermal dispersion. First, mechanism of the heat generation was investigated in relation to the transducer operation through theoretical analysis, and material damping and sound pressure amplitude were confirmed to be influential on the heat generation. Further, we investigated the effects of the properties of the materials constituting the transducer on the thermal dispersion through finite element analysis. Based on the analysis results, we determined the thermal properties of the constituent materials that could facilitate the thermal dispersion inside the transducer. The determined thermal properties were applied to the finite element model, and the results showed that the maximum temperature at an acoustic lens contacting with a patient was decreased to 51 % of its initial value.

A Study on the Effect of a Gap in Measurement of Underwater Transmission Loss by Pulse Tube (펄스 튜브를 이용한 수중 전달 손실 측정에서 간극이 미치는 영향에 대한 고찰)

  • Seo, Yun-Ho;Kim, Sang-Ryul;Kim, Jae-Seung;Byun, Yang-Heon;Seo, Youngsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.192-199
    • /
    • 2015
  • There is a gap between the inner wall of a pulse tube and an underwater acoustic material when the measurement for transmission loss by the pulse tube is carried out. In this paper, the effect, which is caused by the gap, for the measurement of transmission loss is analyzed. Transmission coefficient is derived from the ratio of the pressures between front and rear of the gap. Then, transmission loss for specimen with a gap is obtained by combining the transmission coefficients of the gap and specimen. The results of experiment and simulation for a specimen of stainless steel with 10 mm thickness are compared in order to evaluate the simulation model. Finally, simulations with respect to the gap size and transmission loss of a specimen are performed to analyze and evaluate the effect of the gap in measurement of transmission loss.

Calculation Model of Time Varying Loudness by Using the Critical-banded Filters (임계 대역 필터를 이용한 과도음의 라우드니스 계산 모델)

  • Jeong, Hyuk;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.65-70
    • /
    • 2000
  • It is blown that the loudness is one of the most important metrics in assessing the sound quality and a calculation method for loudness has been standardized for steady sounds. In this study, a new loudness model is suggested for dealing with the transient sound for a unified analysis of various practical sounds. A signal processing technique is introduced for this purpose, which is required for the band subdivision and the prediction of band-level change of transient sounds. In addition, models for the post-masking and the temporal integration are adopted in the analysis of the loudness of transient sounds. In order to solve the problem of the conventional loudness model in the pure-tone signal processing, a critical band filter is employed in the analysis, which consists of 47 critical filters having a filter spacing of a half of the critical bandwidth. For testing the effectiveness of the present model, the predicted responses are compared with the experimental data and it is observed that they are in good agreements.

  • PDF

Reduction of contraction and expansion noise of refrigerator using thermal deformation analysis (열변형 해석을 이용한 냉장고 수축팽창 소음저감)

  • Park, Seong-Kyu;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.344-351
    • /
    • 2019
  • In this work, the mechanism of contraction and expansion noise generation is investigated, and effective methods are proposed to reduce the occurrence frequency of noise during operation of the refrigerator. First, the frequency spectrum analysis was made by using the sound pressure signal measured in an anechoic chamber to investigate the characteristic of noise and the frequency of occurrence. Second, a thermal deformation analysis was conducted to predict the location of noise source. It is found from the analysis that the biggest thermal deformation occurs in the middle of the left inner case in the freezer room. Following the investigation made, a noise reduction method is proposed. The method is proposed to reduce the contraction and expansion noise by reducing the thermal deformation through increasing ABS (Acrylonitrile Butadiene Styrene) thickness in the center of refrigerator.

Experimental Study on the Noise Radiation Characteristics of Stationary Vehicle (정지 차량의 소음 방사특성에 대한 실험적 연구)

  • 최명선;장호경;김정락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.309-315
    • /
    • 2004
  • To estimate the rate of noise contribution caused in each part of a vehicle in the course of a pass-by noise test. researches precedent have been made to study characteristics of nearby radiation noise measured on both sides of cars in a stationary state. With different revolutions per minute of engine. 2.800rpm and 3.200rpm respectively, in the measurement area of pass-by noise, the experiments have been conducted 7.5 meters away from the central axis of the test vehicle to study direction radiation according to frequencies. The results can be applied to reduce vehicle noise.

A Study on the Noise Reduction through the Control of Internal Flow for a Slim Type External ODD (슬림타입 외장형 ODD 내부의 유동 안정을 통한 소음저감에 관한 연구)

  • Lee, Woo-Jin;Seo, Jun-Ho;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • The demand for the laptop computer has been increased day by day and most of users ask quiet computer and devices to work in comfortable environment. One of the devices which generate acoustic noise is an external ODD. Unlike the internal ODD, the external ODD is easy to emit noise because it runs outside of the computer and also it is packed with a thin plastic covers. As the disk rotates, vortex flow is generated inside of the cavity due to various and complicated mold parts of the cover. In addition, there is a gap between the disk tray and the upper/lower cases, through which the air flows as well as the noise leaks. In this study, we have proposed how to reduce the acoustic noise of an external ODD using numerical and experimental analysis. The pressure fluctuations and turbulent kinetic energy distributions are calculated for the developed model. The results show that the sound pressure level is reduced by 2.3dB through simple modifications of ribs of the top cover, which remove or suppress flow instabilities inside of the cavity.

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF