• 제목/요약/키워드: 음소 경계 검출

검색결과 11건 처리시간 0.02초

유성/무성/묵음 분류기와 주파수 스펙트럼을 이용한 음소 경계 검출 (Phoneme Segmentation Using Voice/Unvoiced/Silence Classifier and Spectral Information)

  • 이상래;한현배;한민수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.86-91
    • /
    • 1999
  • 본 논문에서는 유성/무성/묵음 분류기와 주파수 스펙트럼 비교를 통하여 음소 경계 검출기를 구현하였다. 음소경계 검출은 음성 인식, 합성 및 분석 둥의 분야에서 매우 중요하다 유성/무성/묵음 분류기를 이용하여 유성음으로 판별되는 구간은 스펙트럼 비교를 통하여 음소 단위로 세분하였고 무성음으로 판별되는 구간은 한국어의 음성 특성을 고려하여 하나의 음소 단위로 간주하였다. 유성음 구간에 대한 스펙트럼 비교는 수정된 Itakura-Saito distance measure 와 Euclidean MFCC(Mel Frequency Cepstrum Coeffcients) distance measure를 사용하였고 비교 프레임은한 프레임을 건너 윈 경우가 가장 결과가 좋았다. 최종적으로 평균 음소 길이 정보를 이용하여 음소의 경계로 검출된 구간을 더 세분하거나 통합하였다. 유성/무성/묵음 분류기의 경우는 사무실에서 녹음한 고립단어에 대하여 $94.247\%$의 정확도를 보였고 음소 경계 검출의 경우는 $72.8\%$의 정확도를 보였다.

  • PDF

LPC Smoothed Log Amplitude Spectra를 이용한 자동 음성 분할 (Automatic Segmentation Using LPC Smoothed Log Amplitude Spectra)

  • 김도한;이상운;이기정;홍재근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.795-798
    • /
    • 2000
  • 연속음 인식과 음성 합성을 위해서는 정밀한 음성학적 모델과 연속 음성에 적용 가능한 언어 모델의 개발이 중요하다. 이를 위해서는 음성 데이터 베이스에 대한 인식 단위, 혹은 합성 단위의 분할이 필요한데, 수동음성 분할은 일관성의 유지가 어렵고 긴 시간이 소요되므로 최근에는 자동 분할 기술이 많이 연구되고 있다. 자동 음성 분할 기법으로는 시간 영역이나 주파수 영역특징 벡터의 천이를 분석하는 방법과 특징 벡터간의 상관도를 구하여 경계를 추출하는 방법이 있다. LPC smoothed log amplitude spectra는 음성의 주파수 영역의 특징을 잘 나타내며, 동일 음소 내의 상관도가 서로 다른 음소의 상관도보다 더 크고, 음소의 경계구간에서 급격한 상관도의 변화를 보인다. 이 특성을 이용하여 이웃 프레임에 대한 상관도의 방향성이 특정조건을 만족하는가를 검사하여 음소의 경계를 구하는 방법을 찾았다. 또한 LPC. 이득 인자만으로 묵음 구간을 검출하는 방법을 제시한다. 이렇게 하면 묵음 구간검출과 음소 경계 검출의 일관성을 향상시키고 수행 시간을 단축시킬 수 있다. 제안한 기법으로 허용 오차 20ms 이내에서 연속음성에 대한 음소 경계 검출 실험을 수행한 결과, 수작업으로 행한 경계 검출 지점의 약 88%를 정확히 검출하였다.

  • PDF

음소경계검출과 신경망을 이용한 음소인식 연구 (Phoneme-Boundary-Detection and Phoneme Recognition Research using Neural Network)

  • 임유두;강민구;최영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.224-229
    • /
    • 1999
  • 음성 인식 연구는 유사음소 단위의 인식시스템을 구축하는 방향과 단어 단위의 인식시스템에서의 효율을 최대화하는 방향으로 이루어지고 있다. 이중 유용한 유사음소 단위의 인식시스템 구현을 위해서는 음소의 경계 검출 문제와 검출된 음소에 대한 인식률 향상 문제가 해결되어야 한다. 기존의 LPC(Linear Predictive Coefficient) 방법들은 기준 음소데이터의 LPC와 입력 음성프레임의 LPC 사이의 거리를 Itakura-Saito 방법으로 구하여 음소의 경계를 검출하였으며, 근래에는 MFCC(Mel-Frequency-Cepstrum Coefficient)를 이용하여 스펙트럼의 천이부분을 음소의 경계로 검출하는 방법들이 제안되어왔으나 이러한 방법들은 공통적으로 적응성이 미비하다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위해 음소경계검출을 위해서는 auto-correlation을 이용하고 음소인식을 위해서는 적응성이 뛰어난 다층 Feed-Forward 신경망을 사용하는 새로운 인식시스템을 제안하였다 제안하는 시스템은 기존의 방법들보다 적응성이 뛰어나고 특징추출부분과 인식 부분의 알고리듬이 독립적이라는 장점을 가지며 프레임단위의 음소인식시스템의 구현 가능성을 확인해 주었다.

  • PDF

한국어 음성 인식에서 변동성과 벌크 지표에 기반한 음소 경계 검출 (Phoneme Segmentation based on Volatility and Bulk Indicators in Korean Speech Recognition)

  • 이재원
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권10호
    • /
    • pp.631-638
    • /
    • 2015
  • 최근 모바일 환경에서 작동 가능한 음성 인식 시스템에 대한 수요가 급격히 증대되고 있다. 본 논문은 음소 기반 한국어 음성 인식 시스템에 적용하기 위한 새로운 한국어 음소 경계 검출 방안을 제안한다. 먼저 입력 신호는 동일한 크기의 블록들을 구성한다. 제안하는 방식은 입력 음성 신호의 각 블록에 대해 계산되는 변동성 지표와, 부호가 동일한 인접 샘플들의 집합인, 블록 내의 각 벌크에 대해 계산되는 벌크 지표를 음소 경계 검출의 기반 지표로 사용한다. 두 가지 기반 지표를 결합하여 활용하는 세 개의 전용 인식 알고리즘을 사용하여, 모음, 유성 자음, 그리고 무성 자음을 차례로 인식하여 음소 간 경계를 검출한다. 실험 결과를 통해, 제안하는 방식을 사용함으로써 기존의 경계 검출 방식에 비해 오류율을 현저히 감소시킬 수 있음을 확인하였다.

한국어 음성인식에서 음성의 특성을 고려한 음소 경계 검출 (Phoneme Segmentation in Consideration of Speech feature in Korean Speech Recognition)

  • 서영완;송점동;이정현
    • 인터넷정보학회논문지
    • /
    • 제2권1호
    • /
    • pp.31-38
    • /
    • 2001
  • 음소 단위로 구축된 음성 데이터는 음성인식과 음성합성 및 분석 등의 분야에서 매우 중요한 문제이다. 일반적으로 음소는 유성음과 무성음으로 구분된다. 이러한 유성음과 무성음은 많은 특징적 차이가 있지만, 기존의 음소 경계 검출 알고리즘은 이를 고려하지 않고 시간 축을 기준으로 이전 프레임과의 스펙트럼 비교만을 통하여 음소의 경계를 결정한다. 본 논문에서는 음소 경계 검출을 위하여 유성음과 무성음의 특징적 차이를 고려한 블록기반의 분류 알고리즘을 설계하였다. 분류 알고리즘을 사용하기 위한 스펙트럼 비교 방법은 MFCC(kel-Frequency Cepstrum Coefficient)를 기반으로 한 거리 측정 법을 사용하였고 유성음과 무성음의 구분은 에너지 영 교차율, 스펙트럼 비, 포만트 주파수를 이용하였다. 본 논문의 실험결과 3-4음절 고립단어를 대상으로 약 7%,의 정확도를 얻음으로써 기존의 음소 경계 검출 시스템보다 약 8%의 정확도 향상을 보였다.

  • PDF

한국어 음성인식 시스템에서 음소 경계 검출을 위한 Branch 알고리즘 (Branch Algorithm for Phoneme Segmentation in Korean Speech Recognition System)

  • 서영완;한승진;장흥종;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.357-359
    • /
    • 2000
  • 음소 단위로 구축된 음성 데이터는 음성인식, 합성 및 분석 등의 분야에서 매우 중요하다. 일반적으로 음소는 유성음과 무성음으로 구분되어 진다. 이러한 유성음과 무성음은 많은 특징적 차이가 있지만, 기존의 음소 경계추출 알고리즘은 이를 고려하지 않고 시간 축을 기준으로 이전 프레임과 매개변수 (스펙트럼) 비교만을 통하여 음소의 경계를 결정한다. 본 논문에서는 음소 경계 추출을 위하여 유성음과 무성음의 특징적 차이를 고려한 블록기반의 Branch 알고리즘을 설계하였다. Branch 알고리즘을 사용하기 위한 스펙트럼 비교 방법은 MFCC(Mel-Frequency Cepstrum Coefficient)를 기반으로 한 거리 측정법을 사용하였고, 유성음과 무성음의 구분은 포만트 주파수를 이용하였다. 실험 결과 3~4음절 고립단어를 대상으로 약 78%의 정확도를 얻을수 있었다.

  • PDF

문자-음성 합성기의 데이터 베이스를 위한 문맥 적응 음소 분할 (Context-adaptive Phoneme Segmentation for a TTS Database)

  • 이기승;김정수
    • 한국음향학회지
    • /
    • 제22권2호
    • /
    • pp.135-144
    • /
    • 2003
  • 본 논문에서는 문-음성 합성기에서 사용되는 대용량 데이터 베이스의 구성을 목적으로 하는 음성 신호의 자동 분할기법을 기술하였다. 주된 내용은 은닉 마코프 모델에 기반을 둔 음소 분할과 여기서 얻어진 결과를 초기 음소 경계로 사용하여 이를 자동으로 수정하는 방법으로 구성되어 있다. 다층 퍼셉트론이 음성 경계의 검출기로 사용되었으며, 음소 분할의 성능을 증가시키기 위해, 음소의 천이 패턴에 따라 다층 퍼셉트론을 개별적으로 학습시키는 방법이 제안되었다. 음소 천이 패턴은 수작업에 의해 생성된 레이블 정보를 기준 음소 경계로 사용하여, 기준 음소 경계와 추정된 음소 경계간의 전체 오차를 최소화하는 관점에서 분할되도록 하였다. 단일 화자를 대상으로 하는 실험에서 제안된 기법을 통해 생성된 음소 경계는 기준 경계와 비교하여 95%의 음소가 20 msec 이내의 경계 오차를 갖는 것으로 나타났으며, 평균 자승 제곱근 오차면에서 수정 작업을 통해 25% 향상된 결과를 나타내었다.

한국어 규칙 합성을 위한 다이폰의 자동 추출 (An Automatic Diphone Segmentation for Korean Speech Synthesis-by-Rule)

  • 정인종;경연정;김한우;이양희
    • The Journal of the Acoustical Society of Korea
    • /
    • 제12권2E호
    • /
    • pp.63-72
    • /
    • 1993
  • 본 논문에서는 무제한 음성 생성을 위한 단위음성으로서의 다이폰을 2음절 자연음성으로부터 자동 추출하는 알고리즘을 제안한다. 입력음성을 개량 켑스트럼 파라미터로 분석하여 이로부터 다이폰 추출 파라미터들을 도출한다. 제안된 파라미터로는 에너지 레벨을 나타내는 0차 켑스트럼의 동적변화량, 스펙트럼의 시간 변화량 영교차율, 캡스트럼의 유클리디안 거리이다. 스펙트럼 포락의 변화가 완만한 모음 연쇄등의 음소 경계를 보다 효율적으로 검출하기 위해 스펙트럼의 시간 변화를 미세부분과 개형부분으로 나누어 각각을 파라미터로 사용한다. VV(모음연쇄), VCV(C: 반모음, 자음), VCCV형들로 이루어진 2음절 단어들에 대해 실험한 결과, 모음연쇄 등이 포함되어 있음에도 약 85% 정확도의 음소경계검출을 얻었다. 본 논문에 의한 다이폰을 이용한 합성음의 청취실험 결과 명료도가 높음을 확인하였다.

  • PDF

프리엠퍼시스 FIR 필터링의 음성 검출 및 음소 분할에의 응용 (Application of Preemphasis FIR Filtering To Speech Detection and Phoneme Segmentation)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.665-670
    • /
    • 2013
  • 이 논문에서 우리는 음성 검출 및 음소 분할에 대한 새로운 방법을 제안한다. 배경 잡음으로부터 신호를 구분하기 위해 에너지를 활용하게 되는데, 그 이전에 프리엠퍼시스 FIR 필터링을 적용하는 효과에 대해 조사한다. 이 방법에 의해, 에너지 프로필에서 진폭과 주파수의 곱이 동시에 작은 부분이 두드러지게 나타나게 된다. 이 처방에 의해, 묵음/음성 경계가 종전의 방법에 비해 더 선명해짐을 실험적으로 확인하였다. 또한 이 방법을 적용함으로써, 음소 분할 또한 더 수월해짐을 밝혔다.

피치동기에 의한 음성신호의 전이구간 검출 (On Detecting the Transition Regions of Speech Signal by Pitch Synchronization)

  • 나덕수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.454-459
    • /
    • 1998
  • 연속된 음성의 인식을 위해서는 음성신호를 음성학적인 단위인 단어, 음절, 음소 등으로 분할하여야 한다. 이러한 분할을 위해서는 전이구간의 검출이 선행되어야 한다. 본 논문에서는 음성신호에서 전이구간을 검출하기 위해 피치동기로 된 상관관계 계수의 변화를 나타내는 파라미터를 새로이 제안하였다. 이 파라미터는 음성신호의 안정구간에서는 매우 작은 값을 나타내지만 음성의 시작이나 유성음과 무성음의 경계에서는 큰 값을 나타내어 전이구간검출용 파라미터로 매우 용이하다.

  • PDF