• Title/Summary/Keyword: 음소 경계 검출

Search Result 11, Processing Time 0.03 seconds

Phoneme Segmentation Using Voice/Unvoiced/Silence Classifier and Spectral Information (유성/무성/묵음 분류기와 주파수 스펙트럼을 이용한 음소 경계 검출)

  • Lee Sang-Rae;Han Hyun-Bae;Hahn Minsoo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.86-91
    • /
    • 1999
  • 본 논문에서는 유성/무성/묵음 분류기와 주파수 스펙트럼 비교를 통하여 음소 경계 검출기를 구현하였다. 음소경계 검출은 음성 인식, 합성 및 분석 둥의 분야에서 매우 중요하다 유성/무성/묵음 분류기를 이용하여 유성음으로 판별되는 구간은 스펙트럼 비교를 통하여 음소 단위로 세분하였고 무성음으로 판별되는 구간은 한국어의 음성 특성을 고려하여 하나의 음소 단위로 간주하였다. 유성음 구간에 대한 스펙트럼 비교는 수정된 Itakura-Saito distance measure 와 Euclidean MFCC(Mel Frequency Cepstrum Coeffcients) distance measure를 사용하였고 비교 프레임은한 프레임을 건너 윈 경우가 가장 결과가 좋았다. 최종적으로 평균 음소 길이 정보를 이용하여 음소의 경계로 검출된 구간을 더 세분하거나 통합하였다. 유성/무성/묵음 분류기의 경우는 사무실에서 녹음한 고립단어에 대하여 $94.247\%$의 정확도를 보였고 음소 경계 검출의 경우는 $72.8\%$의 정확도를 보였다.

  • PDF

Automatic Segmentation Using LPC Smoothed Log Amplitude Spectra (LPC Smoothed Log Amplitude Spectra를 이용한 자동 음성 분할)

  • 김도한;이상운;이기정;홍재근
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.795-798
    • /
    • 2000
  • 연속음 인식과 음성 합성을 위해서는 정밀한 음성학적 모델과 연속 음성에 적용 가능한 언어 모델의 개발이 중요하다. 이를 위해서는 음성 데이터 베이스에 대한 인식 단위, 혹은 합성 단위의 분할이 필요한데, 수동음성 분할은 일관성의 유지가 어렵고 긴 시간이 소요되므로 최근에는 자동 분할 기술이 많이 연구되고 있다. 자동 음성 분할 기법으로는 시간 영역이나 주파수 영역특징 벡터의 천이를 분석하는 방법과 특징 벡터간의 상관도를 구하여 경계를 추출하는 방법이 있다. LPC smoothed log amplitude spectra는 음성의 주파수 영역의 특징을 잘 나타내며, 동일 음소 내의 상관도가 서로 다른 음소의 상관도보다 더 크고, 음소의 경계구간에서 급격한 상관도의 변화를 보인다. 이 특성을 이용하여 이웃 프레임에 대한 상관도의 방향성이 특정조건을 만족하는가를 검사하여 음소의 경계를 구하는 방법을 찾았다. 또한 LPC. 이득 인자만으로 묵음 구간을 검출하는 방법을 제시한다. 이렇게 하면 묵음 구간검출과 음소 경계 검출의 일관성을 향상시키고 수행 시간을 단축시킬 수 있다. 제안한 기법으로 허용 오차 20ms 이내에서 연속음성에 대한 음소 경계 검출 실험을 수행한 결과, 수작업으로 행한 경계 검출 지점의 약 88%를 정확히 검출하였다.

  • PDF

Phoneme-Boundary-Detection and Phoneme Recognition Research using Neural Network (음소경계검출과 신경망을 이용한 음소인식 연구)

  • 임유두;강민구;최영호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.224-229
    • /
    • 1999
  • In the field of speech recognition, the research area can be classified into the following two categories: one which is concerned with the development of phoneme-level recognition system, the other with the efficiency of word-level recognition system. The resonable phoneme-level recognition system should detect the phonemic boundaries appropriately and have the improved recognition abilities all the more. The traditional LPC methods detect the phoneme boundaries using Itakura-Saito method which measures the distance between LPC of the standard phoneme data and that of the target speech frame. The MFCC methods which treat spectral transitions as the phonemic boundaries show the lack of adaptability. In this paper, we present new speech recognition system which uses auto-correlation method in the phonemic boundary detection process and the multi-layered Feed-Forward neural network in the recognition process respectively. The proposed system outperforms the traditional methods in the sense of adaptability and another advantage of the proposed system is that feature-extraction part is independent of the recognition process. The results show that frame-unit phonemic recognition system should be possibly implemented.

  • PDF

Phoneme Segmentation based on Volatility and Bulk Indicators in Korean Speech Recognition (한국어 음성 인식에서 변동성과 벌크 지표에 기반한 음소 경계 검출)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.631-638
    • /
    • 2015
  • Today, the demand for speech recognition systems in mobile environments is increasing rapidly. This paper proposes a novel method for Korean phoneme segmentation that is applicable to a phoneme based Korean speech recognition system. First, the input signal constitutes blocks of the same size. The proposed method is based on a volatility indicator calculated for each block of the input speech signal, and the bulk indicators calculated for each bulk in blocks, where a bulk is a set of adjacent samples that have the same sign as that of the primitive indicators for phoneme segmentation. The input signal vowels, voiced consonants, and voiceless consonants are sequentially recognized and the boundaries among phonemes are found using three devoted recognition algorithms that combine the two types of primitive indicators. The experimental results show that the proposed method can markedly reduce the error rate of the existing phoneme segmentation method.

Phoneme Segmentation in Consideration of Speech feature in Korean Speech Recognition (한국어 음성인식에서 음성의 특성을 고려한 음소 경계 검출)

  • 서영완;송점동;이정현
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • Speech database built of phonemes is significant in the studies of speech recognition, speech synthesis and analysis, Phoneme, consist of voiced sounds and unvoiced ones, Though there are many feature differences in voiced and unvoiced sounds, the traditional algorithms for detecting the boundary between phonemes do not reflect on them and determine the boundary between phonemes by comparing parameters of current frame with those of previous frame in time domain, In this paper, we propose the assort algorithm, which is based on a block and reflecting upon the feature differences between voiced and unvoiced sounds for phoneme segmentation, The assort algorithm uses the distance measure based upon MFCC(Mel-Frequency Cepstrum Coefficient) as a comparing spectrum measure, and uses the energy, zero crossing rate, spectral energy ratio, the formant frequency to separate voiced sounds from unvoiced sounds, N, the result of out experiment, the proposed system showed about 79 percents precision subject to the 3 or 4 syllables isolated words, and improved about 8 percents in the precision over the existing phonemes segmentation system.

  • PDF

Branch Algorithm for Phoneme Segmentation in Korean Speech Recognition System (한국어 음성인식 시스템에서 음소 경계 검출을 위한 Branch 알고리즘)

  • 서영완;한승진;장흥종;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.357-359
    • /
    • 2000
  • 음소 단위로 구축된 음성 데이터는 음성인식, 합성 및 분석 등의 분야에서 매우 중요하다. 일반적으로 음소는 유성음과 무성음으로 구분되어 진다. 이러한 유성음과 무성음은 많은 특징적 차이가 있지만, 기존의 음소 경계추출 알고리즘은 이를 고려하지 않고 시간 축을 기준으로 이전 프레임과 매개변수 (스펙트럼) 비교만을 통하여 음소의 경계를 결정한다. 본 논문에서는 음소 경계 추출을 위하여 유성음과 무성음의 특징적 차이를 고려한 블록기반의 Branch 알고리즘을 설계하였다. Branch 알고리즘을 사용하기 위한 스펙트럼 비교 방법은 MFCC(Mel-Frequency Cepstrum Coefficient)를 기반으로 한 거리 측정법을 사용하였고, 유성음과 무성음의 구분은 포만트 주파수를 이용하였다. 실험 결과 3~4음절 고립단어를 대상으로 약 78%의 정확도를 얻을수 있었다.

  • PDF

Context-adaptive Phoneme Segmentation for a TTS Database (문자-음성 합성기의 데이터 베이스를 위한 문맥 적응 음소 분할)

  • 이기승;김정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • A method for the automatic segmentation of speech signals is described. The method is dedicated to the construction of a large database for a Text-To-Speech (TTS) synthesis system. The main issue of the work involves the refinement of an initial estimation of phone boundaries which are provided by an alignment, based on a Hidden Market Model(HMM). Multi-layer perceptron (MLP) was used as a phone boundary detector. To increase the performance of segmentation, a technique which individually trains an MLP according to phonetic transition is proposed. The optimum partitioning of the entire phonetic transition space is constructed from the standpoint of minimizing the overall deviation from hand labelling positions. With single speaker stimuli, the experimental results showed that more than 95% of all phone boundaries have a boundary deviation from the reference position smaller than 20 ms, and the refinement of the boundaries reduces the root mean square error by about 25%.

An Automatic Diphone Segmentation for Korean Speech Synthesis-by-Rule (한국어 규칙 합성을 위한 다이폰의 자동 추출)

  • 정인종;경연정;김한우;이양희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.2E
    • /
    • pp.63-72
    • /
    • 1993
  • 본 논문에서는 무제한 음성 생성을 위한 단위음성으로서의 다이폰을 2음절 자연음성으로부터 자동 추출하는 알고리즘을 제안한다. 입력음성을 개량 켑스트럼 파라미터로 분석하여 이로부터 다이폰 추출 파라미터들을 도출한다. 제안된 파라미터로는 에너지 레벨을 나타내는 0차 켑스트럼의 동적변화량, 스펙트럼의 시간 변화량 영교차율, 캡스트럼의 유클리디안 거리이다. 스펙트럼 포락의 변화가 완만한 모음 연쇄등의 음소 경계를 보다 효율적으로 검출하기 위해 스펙트럼의 시간 변화를 미세부분과 개형부분으로 나누어 각각을 파라미터로 사용한다. VV(모음연쇄), VCV(C: 반모음, 자음), VCCV형들로 이루어진 2음절 단어들에 대해 실험한 결과, 모음연쇄 등이 포함되어 있음에도 약 85% 정확도의 음소경계검출을 얻었다. 본 논문에 의한 다이폰을 이용한 합성음의 청취실험 결과 명료도가 높음을 확인하였다.

  • PDF

Application of Preemphasis FIR Filtering To Speech Detection and Phoneme Segmentation (프리엠퍼시스 FIR 필터링의 음성 검출 및 음소 분할에의 응용)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.665-670
    • /
    • 2013
  • In this paper, we propose a new method of speech detection and phoneme segmentation. We investigate the effect of applying preemphasis FIR filtering on the speech signal before the usual speech detection that utilizes the energy profile for discriminating signals from background noise. By this procedure, only the speech section of low energy and frequency becomes distinct in energy profile. It is verified experimentally that the silence/speech boundary becomes sharper by applying the filtering compared to the conventional method. By applications of this procedure, phoneme segmentation is also found to be much facilitated.

On Detecting the Transition Regions of Speech Signal by Pitch Synchronization (피치동기에 의한 음성신호의 전이구간 검출)

  • 나덕수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.454-459
    • /
    • 1998
  • 연속된 음성의 인식을 위해서는 음성신호를 음성학적인 단위인 단어, 음절, 음소 등으로 분할하여야 한다. 이러한 분할을 위해서는 전이구간의 검출이 선행되어야 한다. 본 논문에서는 음성신호에서 전이구간을 검출하기 위해 피치동기로 된 상관관계 계수의 변화를 나타내는 파라미터를 새로이 제안하였다. 이 파라미터는 음성신호의 안정구간에서는 매우 작은 값을 나타내지만 음성의 시작이나 유성음과 무성음의 경계에서는 큰 값을 나타내어 전이구간검출용 파라미터로 매우 용이하다.

  • PDF