• 제목/요약/키워드: 음성 검출

검색결과 726건 처리시간 0.019초

고차 미분에너지 기반 노인 음성에서의 음성 구간 검출 알고리즘 연구 (Development of Voice Activity Detection Algorithm for Elderly Voice based on the Higher Order Differential Energy Operator)

  • 이지연
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.249-255
    • /
    • 2016
  • 노인 음성은 연령에 따른 호흡, 발성, 공명 등의 생리적 변화에 의하여 다량의 잡음이 발생된다. 따라서 노인 음성으로 음성인식 및 합성, 분석 소프트웨어등과 같은 융복합 헬스케어 기기를 동작시키고자 할 때, 성능을 저하시키는 결과를 야기한다. 그러므로 노인 음성을 분석하여 그들의 목소리로 다양한 헬스케어 기기를 잘 운영할 수 있는 위한 연구 개발이 필요하다. 따라서 본 연구는 노인 음성 잡음을 고려하여 기존의 대칭 구조 고차 미분 에너지 함수를 이용하여 노인 음성에서의 음성 구간 검출 알고리즘을 연구하였으며, 자기상관함수와 AMDF 방법과 비교하여 노인 음성에서의 음성 구간 검출에 보다 우수한 성능을 가지는 것을 확인하였다. 본 논문에서 제시하는 음성 구간 검출 알고리즘은 노인을 위한 음성 인터페이스에 적용함으로써 노인들의 스마트 기기에의 접근성을 높이고, 더 나아가 노인들을 위한 융복합 웨어러블 디바이스 성능 개선 및 다양한 개발이 가능할 것으로 전망한다.

기계학습 기반의 장애 음성 검출 시스템 (Machine Learning based Speech Disorder Detection System)

  • 정준영;김기백
    • 방송공학회논문지
    • /
    • 제22권2호
    • /
    • pp.253-256
    • /
    • 2017
  • 본 논문에서는 기계학습 기반의 분류 방법을 이용하여 장애 음성을 검출하고자 한다. 음성 장애 중 마비말 장애는 뇌성마비, 파킨슨 질환, 뇌졸중 등 주로 뇌질환에 의해 발생하는 것으로 알려져 있다. 이러한 장애 음성을 검출함으로써 뇌졸중 등의 급성 뇌질환 발생에 대한 조기 처치가 가능하다. 장애 음성 검출은 입력 음성에 대한 특징벡터 추출과 기계학습을 이용한 분류과정을 통해 이루어질 수 있다. 실험을 위해서 장애 음성 DB인 TORGO 데이터를 사용하였으며, 10가지 기계학습 알고리즘과 다양한 특징벡터 스케일링 방법에 대해 장애 음성 검출 성능을 평가하였다.

잡음 환경에서 심리음향모델 기반 음성 에너지 최대화를 이용한 음성 검출 방법 (Voice Activity Detection Method Using Psycho-Acoustic Model Based on Speech Energy Maximization in Noisy Environments)

  • 최갑근;김순협
    • 한국음향학회지
    • /
    • 제28권5호
    • /
    • pp.447-453
    • /
    • 2009
  • 이 논문은 음성 에너지를 최대화 하여 낮은 SNR환경에서 음성 존재 여부를 판단하고 정확한 끝점을 검출하는 방법에 대한 것이다. 전통적인 VAD (Voice Activity Detection) 알고리듬은 잡음의 추정치를 이용해 음성과 비음성 구간을 선택하여 낮은 SNR환경이나 비안정 잡음환경에서는 정확하지 못한 문턱값으로 인해 부정확한 끝점검출을 하였다. 또한 잡음의 시간적 변화를 반영하기 위해 비교적 큰 분석 구간을 두어 계산량이 증가함에 따라 실제 응용에 적합하지 않은 단점이 있다. 이 논문은 잡음환경에서 정확한 음성 구간의 검출을 위해 심리음향 모델에 기반 한 바크 스케일 필터 뱅크를 이용하여 주어진 프레임에서 음성 에너지를 최대화 시키고 잡음을 억제하는 SEM-VAD (Speech Energy Maximization-Voice Activity Detection) 방법을 제안하였다. 다양한 잡음환경, SNR 15 dB, 10 dB 5 dB 0 dB 상황에서 실험한 결과 SNR의 변화에 안정적인 문턱값을 얻었고, 음성 검출을 위한 실험에서 자동차 잡음 환경에 대한 PHR (Pause Hit Rate)은 모든 잡음 환경에서 100%의 정확도를 보였고, FAR (False Alarm Rate)는 SNR 15 dB와 10 dB에서는 0%, SNR 5 dB에서 5.6% SNR 0 dB에서 9.5%의 성능을 보였다.

균일양자화기의 잔여신호를 이용한 음성신호의 피치검출 (On a Pitch Extraction of Speech Signal using Residual Signal of the Uniform Quantizer)

  • 배명진;한기천;차진종
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.36-40
    • /
    • 1997
  • 음성신호처리 분야에서 정확한 피치검출은 중요하고 필요하다. 지금까지 제안된 피치검출 알고리즘들은 음성신호의 다양성으로 인해 피치를 정확히 검출하기가 어렵다. 본 논문에서는 PCM과 같은 균일 양자화기의 잔여신호에 대해 음성신호의 기본주기를 검출하는 새로운 피치검출법을 제안하였다. 제안한 방법은 무잡음 음성에 대해 평균 0.25%의 조오율이 그리고 0dB의 SNR에 대해서는 평균 3.39%의 조오율이 나타나는 정확성을 보였다. 또한 음소의 천이영역이나 배경잡음 하에서도 피치검출의 정확도가 개선된 피치검출의 결과를 얻었다.

  • PDF

음소기반의 순환 신경망 음성 검출기를 이용한 음성 향상 (Speech Enhancement using RNN Phoneme based VAD)

  • 이강;강상익;권장우;이상민
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.85-89
    • /
    • 2017
  • 본 논문에서는 향상된 연산 능력을 가진 하드웨어와 알고리즘의 혼합을 통하여 음성 향상을 위한 정확한 음성 검출기 구현을 목적으로 하였다. 음성은 음소의 나열로 구성되어있으며 음성 모델을 세우는데 적합한 방법은 이전의 정보를 이용하는 순환 신경망 (recurrent neural network, RNN)을 사용하는 것이다. 실제 존재하는 모든 잡음에 대하여 학습한 모델을 제시하는 것은 사실상 불가능 하므로 이를 극복하고자 음소기반 학습을 진행하였다. 학습의 결과로 세워진 모델을 기반으로 새로운 음성 신호에서 음성을 검출하고 그 결과를 이용하여 음성 향상을 진행하였다. 순환 신경망과 음소기반 학습은 프레임 별 높은 상관성을 가진 음성 신호에서 좋은 성능을 얻을 수 있었으며 음성 검출기의 성능을 검증하기 위하여 라벨 데이터와 음성 검출결과를 비교하고 다양한 잡음 환경에서 객관적 음질 평가를 진행하여 기존의 음성 향상 알고리즘과 비교하였다.

Peak 검출과 AMDF에 의한 고속도 음성주기 추출방법 (A High Speed Pitch Extraction Method Based on Peak Detection and AMDF)

  • 성원용;은종관
    • 대한전자공학회논문지
    • /
    • 제17권4호
    • /
    • pp.38-44
    • /
    • 1980
  • 본 논문에서는 peak 검출과 average magnitude difference function (AMDF)방법을 이용해서 음성의 주기를 고속도로 추출하는 방법이 연구되었다. 먼저 입력 음성을 800Hz로 대역폭을 줄인다음 Pitch peak가 될 만한 몇개의 Peak을 검출한다. 그 다음 이들 peak들의 값을 갖고 AMDF를 계산해서 이들 값들 중에서 최소의 AMDF치를 갖는 peak를 원하는 음성주기로 결정을 한다. 이 방법을 사용하여 음성의 주기를 검출하면 타 음성주기 추출방법 보다 훨씬 적은 계산 시간이 소요될 분만 아니라 비교적 정확한 결과를 얻을 수 있다.

  • PDF

일반화된 정규-라플라스 분포를 이용한 음성검출기 (Voice Activity Detection employing the Generalized Normal-Laplace Distribution)

  • 김상균;권장우;이상민
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.294-299
    • /
    • 2014
  • 본 논문에서는 일반화된 정규-라플라스(generalized normal-Laplace) 분포 기반의 음성 검출기(voice activity detection) 알고리즘을 제안한다. 제안된 알고리즘은, 잡음 섞인 음성 신호의 확률밀도함수를 일반화된 정규-라플라스 분포로 표현한 다음, 일반화된 정규-라플라스 분포의 음성과 잡음의 분산을 고차 모멘트(higher order moments)를 이용하여 추정한다. 제안된 알고리즘은 다양한 조건의 잡음 환경에서 기존의 음성 검출기들과 비교하였으며 향상된 성능을 보였다.

조건 사후 최대 확률과 음성 스펙트럼 변이 조건을 이용한 통계적 모델 기반의 음성 검출기 (A Statistical Model-Based Voice Activity Detection Employing the Conditional MAP Criterion with Spectral Deviation)

  • 김상균;장준혁
    • 한국음향학회지
    • /
    • 제30권6호
    • /
    • pp.324-329
    • /
    • 2011
  • 본 논문에서는 조건 사후 최대 확률 (conditional maximum a posteriori, CMAP)과 음성 스펙트럼 변이 조건을 기반으로 한 새로운 음성 검출기 (voice activity detection, VAD)를 제안한다. 제안된 음성 검출기는 통계적 모델을 기반으로 한 우도비 테스트 (likelihood ratio test, LRT)의 문턱값을 결정하는데 조건 사후 최대 확률과 스펙트럼 변이의 상태 값을 조건부 확률로 부과한다. 제안된 알고리즘을 다양한 잡음 환경에서 기존의 CMAP 기반의 음성 검출기와 비교한 결과 전체적으로 향상된 성능을 보였으며 특히 SNR이 낮은 조건에서 향상 폭이 컸다.

낮은 신호 대 잡음비 환경에서의 퍼지 소속도 천이 C-means 클러스터링을 이용한 음성구간 검출 알고리즘 (Voice Activity Detection Algorithm using Fuzzy Membership Shifted C-means Clustering in Low SNR Environment)

  • 이기현;이윤정;조진호;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.312-323
    • /
    • 2014
  • 음성구간 검출은 음성과 잡음이 섞인 신호에서 음성과 잡음이 섞인 신호에서 음성구간을 찾는 과정으로 잡음제거나 음성 향상을 위한 신호처리에서 매우 중요한 과정이다. 지금까지 음성구간 검출에 관한 많은 연구가 있었지만, 낮은 신호 대 잡음비 환경에서 문장형태의 음성신호에 대해서는 좋은 성능을 보이지 못하였다. 본 논문에서는 신호의 엔트로피를 이용한 초기 VAD과정을 거친 후, 퍼지 소속도 천이 c-means 클러스터링 방법을 이용해 주 VAD과정을 거치는 새로운 VAD알고리즘을 제안한다. 제안한 알고리즘의 성능을 비교 평가하기 위하여 백색잡음의 다양한 신호 대 잡음비 환경에서 실험을 수행하였으며 실험결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

웨이브렛 변환을 이용한 음성신호의 끝점검출 (Endpoint Detection of Speech Signal Using Wavelet Transform)

  • 석종원;배건성
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.57-64
    • /
    • 1999
  • 본 논문에서는 잡음이 포함된 음성의 시작점과 끝점을 효율적으로 검출할 수 있는 알고리듬에 대하여 연구하였다. 이를 위해, 웨이브렛 영역에서의 에너지 분포를 고려함으로써 잡음환경하에서도 음성을 검출할 수 있는 새로운 검출 파라미터를 제안하였다. 제안된 끝점검출 파라미터는 웨이브렛 영역에서 세 번째 coarsed 스케일의 표준편차와 가중치를 곱한 첫 번째 detailed 스케일의 표준편차의 합으로 정의하였다. 제안된 끝점검출기의 성능평가를 위해서 다양한 SNR에서 기존방식과 비교하여 시작점과 끝점의 정확도 실험을 수행하였고 HMM 음성인식시스템을 이용하여 인식실험도 수행하였다.

  • PDF